• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Role of the donor of NO molecules in regulation of primary sensory neuron responses

© 2019 V. B. Plakhova, V. A. Penniyaynen, I. V. Rogachevsky, A. D. Kalinina, S. A. Podzorovaa, B. V. Krylov

Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 St. Petersburg, Makarova emb., 6, Russia

Received 27 Sep 2018

vThe effects of sodium nitroprusside (SNP), a donor of NO molecules, on primary sensory neurons were studied by patch- clamp and organotypic nerve tissue culture methods. SNP (10–2 M) has been found to decrease the voltage sensitivity of NaV1.8 channels which are responsible for nociceptive information coding. The data obtained in organotypic nerve tissue culture indicate that this agent applied at concentrations exceeding 10–4 M inhibits the growth of neurites. Our results demonstrate that antinociceptive effect of SNP, which is based on decreasing the voltage sensitivity of NaV1.8 channels is associated with negative inhibitory action on the development of embryonic nerve tissue in warm-blooded animals. It is suggested that the modulating effect of the NO-ergic system on the nociceptive system is unlikely to be exhibited at the primary sensory neuron level.

Key words: nociception, sensory neurons, patch-clamp method, organotypic nerve tissue culture method, NaV1.8 channels, sodium nitroprusside

DOI: 10.1134/S0235009219020069

Cite: Plakhova V. B., Penniyaynen V. A., Rogachevsky I. V., Kalinina A. D., Podzorovaa S. A., Krylov B. V. Rol donora molekul no v regulyatsii otvetov pervichnogo sensornogo neirona [Role of the donor of no molecules in regulation of primary sensory neuron responses]. Sensornye sistemy [Sensory systems]. 2019. V. 33(2). P. 135-141 (in Russian). doi: 10.1134/S0235009219020069

References:

  • Krylov B., Derbenev A., Podzorova S., Lyudyno M., Kuz’min A., Izvarina N. Morfin ymenyshaet chyvstvitelynosty k potencialu medlennych natrievych kanalov [Morphine decreases the voltage sensitivity of slow sodium channels]. Ros. fiziol. zyrn [Neurosci. Behav. Physiol]. 2000. V. 30(4). P. 431–439 (in Russian).
  • Plakhova V.B., Podzorova S.A., Mishchenko I.V., Bagraev N.T., Klyachkin L.E., Malyarenko A.M., Romanov V.V., Krylov B.V. Vozmoznye mechanizmy deystviy infrakrasnogo izlycheniy na membrany sensornogo neirona [Probable effects of infrared irradiation on sensory neuron membrane] Sensorniye sistemy [ Sensory systems] 2003. V. 17 (1). P. 24–31 (in Russian).
  • Plakhova V.B., Rogachevsky I.V., Shelykh Т.N., Podzorova S.A., Krylov B.V. Ciklicheskii polipeptid PP-14 modyliryet potencialochyvstvitelynocty medlennych natrievych kanalov [Cyclic polypeptide PP-14 modulates the voltage sensitivity of slow sodium channels] Sensorniye sistemy [Sensory systems] 2016. V 30 (3). P. 234–240 (in Russian).
  • Ahern G.P., Klyachko V.A., Jackson M.B. cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends in Neurosci. 2002. V. 25. № 10. P. 510–517.
  • Almers W. Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmacol. 1978. V. 82. P. 97–190.
  • Borovikova L., Borovikov D., Ermishkin V., Revenko S. The resistance of cutaneous feline C-fiber mechanoheat-sensitive unit termination to tetrodotoxin and its possible relation to tetrodotoxinresistant sodium channels. Prim. Sens. Neuron. 1997. V. 2. № 1. P. 65–75.
  • Calabrese V., Mancuso C., Calvani M., Rizzarelli E., Butterfield D.A., Stella A.M. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007. V. 8. № 10. P. 766–775. DOI: 10.1038/nrn2214
  • Cury Y., Picolo G., Gutierrez V.P., Ferreira S.H. Pain and analgesia: the dual effect of nitric oxide in the nociceptive system. Nitric Oxide. 2011. V. 25. № 3. P. 243–254. DOI: 10.1016/j.niox.2011.06.004
  • Elliott A.A., Elliott J.R. Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. J. Physiol (Lond). 1993. V. 463. № 4. P. 39–56.
  • Gold M.S., Reichling D.B., Shuster M.J., Levine J.D. Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc. Natl. Acad. Sci. USA. 1996. V. 93. № 3. P. 1108–1112.
  • Hamill O.P., Marty A., Neher E., Sakmann B., Sigworth F. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers. Arch. 1981. V. 391. № 1. P. 85–100.
  • Hammarström A.K.M., Gage P.W. Nitric oxide increases persistent sodium current in rat hippocampal neurons. J. Physiol. 1999. V. 520. № 2. P. 451–461.
  • Hodgkin A.L., Huxley A.F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 1952. V. 116. № 4. P. 449–472.
  • Jarvis M.F., Honore P., Shieh C.C., Chapman M., Joshi S., Zhang X.F., Kort M., Carroll W., Marron B., Atkinson R., Thomas J., Liu D., Krambis M., Liu Y., McGaraughty S., Chu K., Roeloffs R., Zhong C., Mikusa J.P., Hernandez G., Gauvin D., Wade C., Zhu C., Pai M., Scanio M., Shi L., Drizin I., Gregg R., Matulenko M., Hakeem A., Gross M., Johnson M., Marsh K., Wagoner P.K., Sullivan J.P., Faltynek C.R., Krafte D.S. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc. Natl. Acad. Sci. USA. 2007. V. 104. № 20. P. 8520–8525. DOI: 10.1073/pnas.0611364104
  • Kostyuk P.G., Krishtal O.A., Pidoplichko V.I. Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells. Nature. 1975. V. 257. № 5528. P. 691–693.
  • Kostyuk P.G., Veselovsky N.S., Tsyndrenko A.Y. Ionic currents in the somatic membrane of rat dorsal root ganglion neurons – I. Sodium currents. Neuroscience. 1981. V. 6. № 12. P. 2423–2430.
  • Krylov B.V., Rogachevskii I.V., Shelykh T.N., Plakhova V.B. Frontiers in pain science. Volume 1. New nonopioid analgesics: understanding molecular mechanisms on the basis of patch-clamp and quantumchemical studies. Sharjah, U.A.E., Bentham Science Publishers Ltd., 2017. 203 p.
  • Liu X., Tang L., Chen B., Jiang W. Role of sodium nitroprusside in regulating retinal ganglion cell damage through mitochondrial transcription factor A. Neurosci. Lett. 2016. V. 635. P. 90–96. DOI: 10.1016/j.neulet.2016.10.045
  • Lopatina E.V., Yachnev I.L., Penniyaynen V.A., Plakhova V.B., Podzorova S.A., Shelykh T.N, Rogachevsky I.V., Butkevich I.P., Mikhailenko V.A., Kipenko A.V., Krylov B.V. Modulation of signal-transducing function of neuronal membrane Na+,K+-ATPase by endogenous ouabain and low-power infrared radiation leads to pain relief. Med. Chem. 2012. V. 8. №1. P. 33–39.
  • Park A.R., Lee H.I., Semjid D., Kim D.K., Chun S.W. Dual effect of exogenous nitric oxide on neuronal excitability in rat substantia gelatinosa neurons. Neural. Plast. 2014. V. 2014. P628531. DOI: 10.1155/2014/628531
  • Tyurenkov I., Perfilova V., Vasil’eva O., Rogachevskii I., Penniyaynen V., Shelykh T., Podzorova S., Krylov B, Plakhova V. GABA- and NO-ergic modulators control antinociceptive responses. Act. Nerv. Super. Rediviva. 2018. V. 60. № 1. P. 1–8.
  • Wang R., Zhao J., Zhang L., Peng L., Zhang X., Zheng W., Chen H. Genipin derivatives protect RGC-5 from sodium nitroprusside-induced nitrosative stress. Int. J. Mol. Sci. 2016. V. 17. № 1. P. E117. DOI: 10.3390/ijms17010117