In this paper, we consider the problem of computed tomography and usage of the algebraic method in the case when GPU
memory is not enough to process the entire projection data. This can happen if we use the algebraic method to cone beam
gathered projection data. We state the optimization task for reconstructing the volume part by part, we also describe
volume to parts division method and show how to overcome memory requirements in the task of full volume reconstruction.
We also provide the comparison of reconstructions with different algorithms: reconstruction of the entire volume as a
whole and part by part reconstruction.
Key words:
tomographic reconstruction, cone beam measurement, iterative reconstruction, graphics processing unit, Random Access
Memory capacityr
DOI: 10.1134/S0235009219020021
Cite:
Chukalina M. V., Ingacheva A. S., Buzmakov A. V., Terekhin A. P., Chikinac Iou.
Algebraicheskaya rekonstruktsiya v usloviyakh nedostatka pamyati graficheskogo protsessora v zadache kompyuternoi tomografii
[Algebraic reconstruction in case of limited gpu memory in the task of computed tomography].
Sensornye sistemy [Sensory systems].
2019.
V. 33(2).
P. 166-172 (in Russian). doi: 10.1134/S0235009219020021
References:
- Natterer F. Matematicheskie aspekty komp’yuternoj tomografii. [Mathematical aspects of computer tomography]. M.: Mir, 1990. 288 р. (in Russian).
- Prun V.E., Buzmakov A.V., Nikolaev D.P., Chukalina M.V., Asadchikov V.E. Vychislitel’no jeffektivnyj variant algebraicheskogo metoda komp’juternoj tomografii. [A computationally efficient version of the algebraic method for computer tomography]. Avtomatika i telemehanika [Automation and Remote Control]. 2013. V. 74. №10. P. 1670–1678 (in Russian).
- Andersson F., Carlsson M., Nikitin V.V. Fast algorithms and efficient GPU implementations for the Radon transform and the back-projection operator represented as convolution operators. SIAM Journal on Imaging Sciences. 2016. V. 9 (2). P. 637–664.
- Birnbacher L., Willner M., Marschner M., Pfeiffer D., Pfeiffr F., Herzen J. Accurate effective atomic number determination with polychromatic grating-based phase-contrast computed tomography. Optics express. 2018. V. 26. № 12. P. 15153–15166.
- Buzmakov A., Nikolaev D., Chukalina M., Schaefer G. Efficient and Effective Regularised ART for Computed Tomography. 33rd Annual International Conference of the IEEE EMBS. Boston. Massachusetts USA. 2011. P. 6200–6203.
- Greenwood M. CERN Technology Powers World’s First 3-D Color X-Ray of a Human. 2018. https://www.engineering. com/Hardware/ArticleID/17302/CERN.
- Kak A.C., Slaney M. Principles of Computerized Tomographic Imaging. New York, IEEE Press. 1988. 329 p.
- Nikolaev D., Buzmakov A., Chukalina M., Yakimchuk I., Gladkov A., Ingacheva A. CT Image Quality Assessment based on Morphometric Analysis of Artifacts. Proc. SPIE 10253. 2016. V. 10253-06. P. 102530B. doi: 10.1117/12.2266268
- Van Aarle W., Palenstijn W. J., Cant J., Janssens E., Bleichrodt F., Dabravolski A., De Beenhouwer J., Batenburg K. J., Sijbers J. Fast and Flexible X-ray Tomography Using the ASTRA Toolbox. Optics Express, 2016. V. 24 (22). P. 25129–25147.
- Xu F., Mueller K. Real-time 3D computed tomographic reconstruction using commodity graphics hardware. Physics in Medicine and Biology. 2007. № 52. P. 3405–3419.
- Zhao W., Vernekohl D., Han F., Han B., Peng H., Yang Y., Xing L., Min J.K. A unified material decomposition framework for quantitative dual- and triple-energy CT imaging. Med. Phys. 2018. V. 45. № 7. P. 2964–2977.