• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Contribution of the marginal peripheral retina to color constancy: Evidence obtained due to contact lens with implanted occluder

© 2019 G. I. Rozhkova, E. N. Iomdina, O. M. Selina, A. V. Belokopytov, P. P. Nikolayev

Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences 127051 Moscow, B. Karetny per. 19, Build. 1, Russia
Moscow Helmholtz Research Institute of Eye Diseases, 105062, Moscow, Sadovaya-Chernogryazskaya, 14/19, Russia

Received 15 Jan 2019

Novel experimental data are presented to demonstrate participation of the marginal peripheral retina (MPR) in providing color constancy. According to A. Yarbus (Yarbus, 1975a, b; 1977; Yarbus, Rozhkova, 1977), the task of the MPR is to estimate spectral characteristics of the scene illumination presuming that they are directly related to the ambient light stimulating MPR. The estimates of illumination obtained at the MPR are supposed to be used for color normalization by perceptual color constancy mechanisms in all the visual field. Usually, MPR photoreceptors are stimulated by two principally different light flows: the light that enters the eye through the pupil and partially scatters inside all the eye media (pupillary component) and the light that reaches the retina from its outer side, e.i. “diasclerally”, going from the illuminated eye surface through all eye tunics (scleral component). These two components differ in their spectra because they have to pass different eye structures that make the scleral component more reddish than the pupillary one. Taking into account this difference, we have contrived a new experimental paradigm for verifying Yarbus’s hypothesis on the basis of changing the balance between these two components by means of contact lens with implanted opaque occluder. The occluder diminished the amount of scattered light reaching MPR photoreceptors from inside the eye ball but did not change the outside light flow. It was anticipated that resulting change of balance in favor of reddish scleral component should lead to relative increase of the red color coordinate in the red-green-blue estimates of illumination and, correspondingly, to shifting all the perceived colors in green-blue direction. Our experimental data on peripheral vision obtained in photopic conditions of illumination supported this prediction. In certain cases, transformations of colors appeared to be dramatic, e.g. saturated red could be perceived as saturated green.

Key words: color vision, peripheral visual field, peripheral blind retina, diasleral stimulation, color constancy, contact lens, implanted occluder

DOI: 10.1134/S0235009219020082

Cite: Rozhkova G. I., Iomdina E. N., Selina O. M., Belokopytov A. V., Nikolayev P. P. Vklad krainei periferii setchatki v konstantnost tsvetovospriyatiya: svidetelstva, poluchennye blagodarya kontaktnym linzam s implantirovannymi okklyuderami [Contribution of the marginal peripheral retina to color constancy: evidence obtained due to contact lens with implanted occluder]. Sensornye sistemy [Sensory systems]. 2019. V. 33(2). P. 113-123 (in Russian). doi: 10.1134/S0235009219020082

References:

  • Artigas J.M., Felipe A., Navea A., Fandiño A., Artigas C. Spectral transmission of the human crystalline lens in adult and elderly persons: color and total transmission of visible light. Invest Ophthalmol & Vis Sci. 2012. V. 53 (7). P. 4076–84. DOI: 10.1167/iovs.12-9471
  • Baird J.W. The color sensitivity of the peripheral retina. Washington: Carnegie Institute. 1905. No. 29.
  • Boettner E.A., Wolter J.R. Transmission of the Ocular Media. Invest. Ophthalmol. & Vis. Sci. 1962. V. 1 (6). P. 776–783.
  • Donders F.C. Die Grenzen des Gesichtsfeldes in Beziehung zudenen der Netzhaut / Albrecht. Graef’s Arch Ophthal. 1877. V. 23. P. 255–280.
  • Fairchild M. CIE 170-1:2006 Cone Fundamentals for Various Field Sizes and Observer Ages. Last Revision: 02/06/2007. URL: https://www.rit.edu/science/pocs/useful-data (accessed 15.01.2019).
  • Foster D.H. Color constancy. Vision Research. 2011. V. 51. P. 674–700. DOI: 10.1016/j.visres.2010.09.006
  • Fry G.A., Alpern M. The effect on foveal vision produced by a spot of light on the sclera near the margin of the retina. JOSA. 1953. V. 43 (3). P. 187–188.
  • Hammer M., Roggan A., Schweitzer D., and G Muller. Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation. Physics in Medicine and Biology. 1995. V. 40 (6). P. 963–978. DOI: 10.1088/0031-9155/40/6/001
  • Hellpach W. Die Farbenwahrnehmung im indirecten Sehen. Philosophische Studien. 1900. V. 15. P. 524–578.
  • Kobayashi H., Kohshima S. Unique morphology of the human eye and its adaptive meaning: comparative studies on external morphology of the primate eye. Journal of Human Evolution. 2001. V. 40. P. 419–435. DOI: 10.1006/jhev.2001.0468
  • Kravkov S.V. Glaz i ego rabota: psihofiziologija zrenija, gigiena osveshhenija [The Eye and its functions: psychophysiology of vision, hygiene of illumination]. Moskva-Leningrad. Izd-vo Akademii nauk SSSR [Moscow-Leningrad. Publishing House of the Academy of Sciences of the USSR]. 1950. 531 p (in Russian).
  • Lythgoe R. Dark-adaptation and the peripheral colour sensations of normal subjects. Brit. J. Ophthalmol. 1931, April. P. 193–210.
  • Logvinenko A.D., Funt B., Mirzaei H., Tokunaga R. Rethinking colour constancy. PLOS ONE. 2015. V. 10 (9). P. e0135029. DOI: 10.1371/journal.pone.0135029
  • Mollon J., Regan B.C., Bowmaker J.K. What is the function of the cone-rich rim of the retina? Eye. 1998. V. 12 (Pt 3b). P. 548–552.
  • Nikolaev P.P., Rozhkova G.I. Analiz koncepcii A.L. Yarbusa o roli slepoj setchatki v cvetovosprijatii [Analysis of the Yarbus’s conceptions on the role of the blind retina in color perception]. Sensornye sistemy [Sensory systems]. 2017. V. 31 (2). P. 116–138 (in Russian).
  • Nikolaev P., Rozhkova G. Yarbus’s Conceptions on the General Mechanisms of Color Perception. Perception. 2015. V. 44 (8–9). P. 952–972.
  • Panova I.G., Poltavtseva R.A., Rozhkova G.I. Morfologicheskaya kharakteristika razvitiya krainei periferii setchatki v oblasti ora serrata [Characteristics of morphological development of the extreme retinal periphery near ora serrata]. Sensornye sistemy [Sensory systems]. 2018. V. 32 (4). P. 302–309 (in Russian). DOI: 10.1134/S0235009218040091
  • Pikler J. Das Augenhtillenlicht als Mass der Farben. Zeits. f. Psychol. 1931. B. 120 (189).
  • Purkinje J. Commentatio de examine physiologique organi visus et systematis cutanei. Breslau: University of Breslau. 1823.
  • Purkinje J. Beobachtungen und Versuche zur Physiologie der Sinne. Zweites Bändchem. In: Neue Beträge zur Kenntnis des Sehens in Subjektiver Hinsicht. Berlin. Reimer. 1825.
  • Rabkin E.B. Polihromaticheskie tablicy dlja issledovanija cvetooshhushhenija [Polychromatic tables for color perception test]. Moskva. Medicina [Moscow. Medicine], 1971. 72 p. (in Russian).
  • Rozhkova G.I., Rychkova S.I., Gracheva M.A., Belokopytov A.V., Iomdina E.N. Vliyanie lokalnoi diaskleralnoi stimulyatsii krainei i srednei periferii setchatki na fovealnuyu kontrastnuyu chuvstvitelnost i tsvetorazlichenie [The effect of local diascleral stimulation of the extreme and middle peripheral parts of the retina on foveal contrast sensitivity and color recognition]. Sensornye sistemy [Sensory systems] 2018. V. 32 (4). P. 310–320 (in Russian). DOI: 10.1134/S0235009218040108
  • Rozhkova G.I., Belokopytov A.V., Gracheva M.A. Zagadki slepoi zony i koltsa povyshennoi plotnosti kolbochek na krainei periferii setchatki [Mysteries of the blind zone and cone-enriched rim at the extreme periphery of the human retina]. Sensornye sistemy [Sensory systems]. 2016. V. 30 (4). P. 263–281 (in Russian).
  • Ruddock K.H. Light transmission through the ocular media and macular pigment and its significance for psychophysical investigation. In: Jameson D., Hurvich L.M. (eds) Visual Psychophysics. Handbook of Sensory Physiology, vol 7/4. 1972. Springer, Berlin, Heidelberg.
  • Schouten J.F., Ornstein L.S. Measurements on direct and indirect adaptation by means of a binocular method. JOSA. 1939. V. 29. P. 168–182.
  • To M.P.S., Regan B.C., Wood D., Mollon J.D. Vision out of the corner of the eye. Vision Research. 2011. V. 51 (1). P. 203–214.
  • Tyler C.W. Peripheral color demo. I-Perception. 2015. V. 6 (6). P. 2041669515613671. DOI: 10.1177/2041669515613671
  • Tyler C.W. Peripheral Color Vision and Motion Processing. Human Vision and Electronic Imaging. 2016. V. 5. P. 1–5. DOI: 10.2352/ISSN.2470-1173.2016.16HVEI-138
  • Yarbus A.L. O rabote zritel’noj sistemy cheloveka. I. Adekvatnyj zritel’nyj stimul [Human visual system. I. Adequate visual stimulus]. Biofizika [Biophysics]. 1975a. V. 20 (5). P. 916–919 (in Russian).
  • Yarbus A.L. O rabote zritel’noj sistemy cheloveka. II. Cvet [Human visual system. II. The perceived colour]. Biofizika [Biophysics]. 1975 b. V. 20 (6). P. 1099–1104 (in Russian).
  • Yarbus A.L. O rabote zritel’noj sistemy cheloveka. VIII. Opisanie operacij s cvetami sredstvami vektornoj algebry [Human visual system. VIII. Description of colour transformations by means of vector algebra]. Biofizika [Biophysics]. 1977. V. 22 (6). P. 1087–1094 (in Russian).
  • Yarbus A.L., Rozhkova G.I. Osobennosti vosprijatija ob#ektov na periferii polja zrenija [The peculiarities of perceiving visual objects at the periphery of the visual field]. In: Sensornye sistemy [Sensory systems]. Leningrad: Nauka. 1977. P. 64–73. (in Russian).