• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Neurophysiological mechanisms of two sequential orientations comparison in working memory

© 2019 E. S. Mikhailova, N. Yu. Gerasimenko

Institute of Higher Nervous Activity and Neurophysiology of RAS 117485 Moscow, Butlerova str., 5A, Russia

Received 09 Jan 2019

Orientation working memory is an important component of human visual-spatial behavior, allowing to save the relevant information. In our experiments in 33 healthy subjects with normal vision, the role of low-level sensory and high-level prefrontal cortex areas in the comparison of the current and retained orientations was investigated. This operation is crucial for detecting changes and forming rapid adaptation reactions. The stimuli were rectangular grids of vertical, horizontal and 45 deg. orientations. It was found that informative indicators of mismatch of two successive orientations are a significant increase of the early P100/N150 components of visual evoked potential in the early visual cortex and an increase of the negativity N240 in the prefrontal region. These changes were accompanied by increased activity of the prefrontal cortex structures: middle frontal gyrus, frontal pole, pars orbitalis. Thus, the mismatch of the current signal and the information retained in the memory is detected by the joint participation of the visual neural network of the caudal cortex areas and the network of the executive control of the prefrontal area, which includes this information in the goal-directed behavior. The findings emphasize the importance of the close interaction of the sensory and prefrontal areas in the visual working memory.

Key words: human, vision, orientations, working memory, evoked potentials, visual cortex

DOI: 10.1134/S0235009219020045

Cite: Mikhailova E. S., Gerasimenko N. Yu. Neirofiziologicheskie mekhanizmy sravneniya dvukh posledovatelnykh orientatsii v zadache rabochei pamyati [Neurophysiological mechanisms of two sequential orientations comparison in working memory]. Sensornye sistemy [Sensory systems]. 2019. V. 33(2). P. 99-112 (in Russian). doi: 10.1134/S0235009219020045

References:

  • Beteleva T.G., Sinitsyn S.V. Svyazannyye s sobytiyami potentsialy na raznykh etapakh realizatsii zritel’noy rabochey pamyati. [Event-related potentials in different stages of the operation of visual working memory chelove] Fiziologiy сheloveka [Human physiology] 2008. V. 34 (3). P. 5–15 (in Russian). DOI: 0.7868/S0131164617030146.
  • Gorbacheva I. Metody matematicheskoy statistiki. URL: http://medstatistic.ru/articles/kratkiy_kurs.pdf [Methods of mathematical statistics]. URL: http://medstatistic.ru/articles/kratkiy_kurs.pdf (appeal date 01.09.2018) (in Russian).
  • Krylova M.A., Iz’yurov I.V., Gerasimenko N.Yu., Chayanov N.V., Mikhaylova E.S. Modelirovaniye istochnikov komponentov zritel’nykh vyzvannykh potentsialov cheloveka v zadache opredeleniya oriyentatsii otrezkov liniy [The mideling of human visual ERPs sourses in the task of line orientation identification] Zurnal vusschey nervnoy deytelynosty [ Zh Vyssh Nerv Deiat ] 2015. V. 65 (6). P. 685–698 (in Russian) DOI: 0.7868/S0131164617030146.
  • Machinskaya R.I. Upravlyayushchiye sistemy mozga [The Brain Executive Systems] Zurnal vusschey nervnoy deytelynosty [Zh Vyssh Nerv Deiat]. 2015. V. 65 (1). P. 33–60 (in Russian). DOI: 10.7868/S0044467715010086.
  • Allison T., Puce A., Spencer D.D., McGarthy G. Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb Cortex. 1999. V. 9. P. 415–430. https://doi.org/.10.1093/cercor/9.5.415
  • Angelucci A., Levitt J.B., Walton E.J.S., Hupe J.-M., Bullier J., Lund J.S. Circuits for local and global signal integration in primary visual cortex. J. Neurosci. 2002. V. 22. P. 8633–8646. https://doi.org/.10.1523/JNEUROSCI. 22-19-08633.2002
  • Bar M., Kassam K.S., Ghuman A.S., Boshyan J., Schmid A.M., Dale A.M., Hamalainen M.S., Marinkovic K., Schacter D.L., Rosen B.R., Halgren E. Top-down facilitation of visual recognition. PNAS. 2006. V. 103. P. 449–454. DOI: 10.1073/pnas.0507062103
  • Bledowski C., Prvulovic C. D., Hoechstetter K., Scherg M., Wibral M., Goebel R., Linden D.E. Localizing P300 generators in visual target and distractor processing: a combined event-related potential and functional magnetic resonance imaging study. J. Neurosci. 2004. V. 24. P. 9353–9560.
  • Chelazzi L., Miller E.K., Duncan J., Desimone R. Responses of neurons in macaque area V4 during memory-guided visual search. Cereb. Cortex. 2001. V. 11. P. 761–772.
  • Christophel T.B., Klink P.C., Spitzer B., Roelfsema P.R., Haynes J.D. The distributed nature of working memory. Trends Cogn. Sci. 2017. V. 21. P. 111–124. DOI: 10.1016/j.tics.2016.12.007
  • Courtney S.M., Petit L., Haxby J., Ungerleider L.G. The role of prefrontal cortex in working.memory: examining the contents of consciousness. Phil.Trans. R. Soc. Lond. B. 1998. V. 353. P. 1819–1828.
  • Curtis C.E., D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends. Cogn. Sci. 2003. V. 7. P. 415–423. DOI: 10.1016/S1364-6613(03)00197-9
  • D’Esposito M. From cognitive to neural models of working memory. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2007. V. 362. P. 761–772. DOI: 10.1098/rstb.2007.2086
  • D’Esposito M., Postle B.R. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 2015. V. 66. P. 115–142. DOI: 10.1146/annurev-psych-010814-015031
  • D’Esposito M., Aguirre G.K., Zarahn E., Ballard D., Shin R.K., Lease J. Functional MRI studies of spatial and nonspatial working memory. Cogn. Brain Res. 1998. V. 7. P. 1–13.
  • Desikan R.S., Segonne F., Fischl B., Quinn B.T., Dickerson B.C., Blacker D., Buckner R.L., Dale A.M., Maguire R.P., Hyman B.T., Albert M.S., Killiany R.J. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006. V. 31. P. 968–980. http://dx.doi.org/.10.1016/j.neuroimage.2006.01.021
  • Ester E.F., Serences J.T., Awh E. Spatially global representations in human primary visual cortex during working memory maintenance. J. Neurosci. 2009. V. 29. P. 15258–15265. DOI: 10.1523/JNEUROSCI.4388-09.2009
  • Ester E.F., Sprague T.C., Serences J.T. Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron. 2015. V. 87. P. 1–13. DOI: 10.1016/j.neuron.2015.07.013
  • Harrison S.A., Tong F. Decoding reveals the contents of visual working memory in early visual areas. Nature. 2009. V. 458. P. 632–635. DOI: 10.1038/nature07832
  • Hillyard S.A. Event-related potentials (ERPs) and cognitive processing. Encyclopedia of Neuroscience. 2009. P. 13–18.
  • Hollingworth A., Richard A.M., Luck S.J. Understanding the function of visual short-term memory in human cognition: transsaccadic memory, object correspondence, and gaze correction. J. Exp. Psychol. Gen. 2008. V. 137. P. 163–181. DOI: 10.1037/0096-3445.137.1.163
  • Hubel D.H., Wiesel T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 1962. V. 160. P. 106–154.
  • Hyun J.S., Woodman G.F., Vogel E.K., Hollingworth A., Luck S.J. The comparison of visual working memory representations with perceptual inputs. J. Exp. Psychol. Hum. Percept. Perform. 2009. V. 35. P. 1140–1160. DOI: 10.1037/a0015019
  • Kuo B.C., Yeh Y.Y., Chen A.J.W., D’Esposito M. Functional connectivity during top-down modulation of visual short-term memory representations. Neuropsychologia. 2011. V. 49. P. 1589–1596. DOI: 10.1016/j.neuropsychologia.2010.12.043
  • Luck S.J., Vogel E.K. The capacity of visual working memory for features and conjunctions. Nature. 1997. V. 390. P. 279–281.
  • Ma Y., Hua X., Wilson F. The egocentric spatial reference frame used in dorsal–lateral prefrontal working memory in primates. Neurosci. and Biobehav. Rev. 2011. V. 36. P. 26–33. DOI: 10.1016/j.neubiorev.2011.03.011
  • Magnussen S. Low-level memory processes in vision. Trends Neurosci. 2000. V. 23. P. 247–251.
  • Magnussen S. Implicit visual working memory. Scand. J. Psychol. 2009. V. 50. P. 535–542. https://doi.org/.10.1111/j.1467-9450.2009.00783.x
  • Miller E.K., Li L., Desimone R. Activity of neurons in anterior inferior temporal cortex during a short- term memory task. J. Neurosci. 1993. V. 13. P. 1460–1478.
  • Miller B.T., D’Esposito M. Spatial and temporal dynamics of cortical networks engaged in memory encoding and retrieval. Front. Hum. Neurosci. 2012. V. 6 (109). P. 1–11. DOI: 10.3389/fnhum.2012.00109
  • Offen S., Schluppeck D., Heeger D.J. The role of early visual cortex in visual short-term memory and visual attention. Vision Res. 2009. V. 49. P. 1352–1362. DOI: 10.1016/j.visres.2007.12.022
  • Pasternak T., Greenlee M.W. Working memory in primate sensory systems. Nat. Rev. Neurosci. 2005. V. 6. P. 97–107. DOI: 10.1038/nrn1603
  • Pratte M.S., Tong F. Spatial specificity of working memory representations in the early visual cortex. Journal of Vision. 2014. V. 14. P. 1–12. DOI: 10.1167/14.3.22
  • Raposo D., Kaufman M.T., Churchland A.K. A categoryfree neural population supports evolving demands during decision-making. Nat. Neurosci. 2014. V. 17. P. 1784–1792.
  • Solomon S.G., Lennie P. The machinery of colour vision. Nat. Rev. Neurosci. 2007. V. 8. P. 276–286. DOI: 10.1038/nrn2094
  • Schacter D.L., Chiu C.-Y. P., Ochsner K.N. Implicit memory: a selective review. Annu. Rev. Neurosci. 1993. V. 16. P. 159–182. https://doi.org/10.1146/annurev. ne.16.030193.001111.
  • Serences J.T., Ester E.F., Vogel E.K., Awh E. Stimulus-specific delay activity in human primary visual cortex. Psychol. Sci. 2009. V. 20. P. 207–214. DOI: 10.1111/j.1467-9280.2009.02276.x
  • Smith E.E., Jonides J., Koeppe R.A., Awh E., Schumacher E.H., Minoshima S. Spatial versus object working memory: PET investigations. J. Cog. Neurosci. 1995. V. 7. P. 337–356. DOI: 10.1162/jocn.1995.7.3.337
  • Stokes M.G., Kusunoki M., Sigala N., Nili H., Gaffan D., Duncan J. Dynamic coding for cognitive control in prefrontal cortex. Neuron. 2013. V. 78. P. 364–375. DOI: 10.1016/j.neuron.2013.01.039
  • Tian S., Wang Y., Wang H., Cui L. Interstimulus interval effect on event-related potential N270 in a color matching task. Clin. Electroencephalogr. 2001. V. 32. P. 82–86. https://doi.org/.10.1177/155005940103200207
  • Wang H., Wang Y., Kong J., Cui L., Tian S. Enhancement of conflict processing activity in human brain under task relevant condition. Neurosci. Lett. 2001. V. 298. P. 155–158.
  • Xu X., Collins C.E., Khaytin I., Kaas J.H., Casagrande V.A. Unequal representation of cardinal vs. oblique orientations in the middle temporal visual area. 2006. PNAS. V. 103. P. 17490–17495. https://doi.org/.10.1073/pnas.0608502103
  • Yang L.C., Li M.H., Wilson F.A., Hu X.T., Ma Y.Y. Prefrontal attention and multiple reference frames during working memory in primates. Chin Sci Bull. 2013. V. 58. P. 449–455. DOI: 10.1007/s11434-012-5462-y
  • Yin J., Gao Z., Jin X., Ye L., Shen M., Shui R. Tracking the mismatch information in visual short term memory: An event-related potential study. Neurosci. Lett. 2011. V. 491. P. 26–30. DOI: 10.1016/j.neulet.2011.01.001
  • Zhang X., Wang Y., Li S., Wang L. Event-related potential N270, a negative component to identification of conflicting information following memory retrieval. Clin. Neurophysiol. 2003. V. 114. P. 2461–2468.