• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Contribution of the spectral and temporal mechanisms to analysis of complex sound signals

© 2019 O. N. Milekhina, D. N. Nechaev, A. Ya. Supin

A.N. Severtsov Institute of Ecology and Evolution RAS, 119071 Moscow, Leninsky Prospect, 33, Russia

Received 01 Aug 2018

Frequency resolving power (FRP) of hearing was measured in normal-hearing listeners. FRP was specified as a maximal resolvable ripple density (ripples/oct) in rippled spectra. The test signal featured periodical (every 400 ms) reversals of the ripple phase. The measurements were carried out by comparison of a test and comparison signal. Either a rippled- spectrum signal with a constant ripple phase (contrary to the test signal with phase reversals) or a flat (non-rippled) spectrum signal were exploited as a reference signal. Each measurement trial included one test and two reference signals, randomly ordered. The listener identified the test signal as differing from two others. With the use of a rippled-spectrum test signal, FRP estimate was 8.9 ± 0.6 cycle/oct. With the use of a flat-spectrum reference signal, FRP estimate was 26.1 ± 8.8 cycle/oct. Hypothetically, this difference arose due to different contributions of the spectral and temporal mechanisms of frequency selectivity. The spectral mechanism played a primary role for discrimination of two rippledspectrum signals, whereas the temporal mechanism primarily contributed to discrimination between the rippled- and flat-spectrum signals.

Key words: hearing, rippled spectrum, frequency resolving power

DOI: 10.1134/S0235009219020057

Cite: Milekhina O. N., Nechaev D. N., Supin A. Ya. Uchastie spektralnogo i vremennogo mekhanizmov v analize slozhnykh zvukovykh signalov [Contribution of the spectral and temporal mechanisms to analysis of complex sound signals]. Sensornye sistemy [Sensory systems]. 2019. V. 33(2). P. 124-134 (in Russian). doi: 10.1134/S0235009219020057

References:

  • Popov V.V., Supin A.Ya. Kolichestvennoye izmereniye razreshayuschey sposobnosty slukha cheloveka [Quantitative measurement of the resolving power of human’s hearing]. Doklady Akademii Nauk SSSR [Proc. Acad. Sciences SSSR]. 1984. V. 278. P. 1012–1016 (in Russian).
  • Popov V.V., Supin A.Ya. Chastitnaya razreshayschaya sposobnost slukha cheloveka [Frequency resolving power of human’s hearing]. Fiziologiya Cheloveka [Fiziol. Human physiol.] 1987. V. 13. P. 28–34 (in Russian).
  • Supin A.Ya., Popov V.V., Milekhina O.N., Tarakanov M.B. Chastitnaya razreshayschaya sposobnost slukha cheloveka: Zavisimost ot intensivnosty signala i pomekh [Frequency resolving power of human’s hearing: Dependence on intensity of the signal and noise]. Sensorniye Systemy [Sensory Systems]. 2001. V. 16. P. 309–329 (in Russian).
  • Supin A.Ya., Popov V.V., Milekhina O.N., Tarakanov M.B. Chastitnaya razreshayschaya sposobnost slukha cheloveka ghb razlichnykh sootnosheniyakh pomekha/signal [Frequency resolving power of human’s hearing at various signal/noise ratios]. Sensorniye Systemy [Sensory Systems]. 2006. V. 20. P. 141–148 (in Russian).
  • Anderson E.S., Nelson D.A., Kreft H., Nelson P.B., Oxenham A.J. Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users. J. Acoust. Soc. Am. 2011. V. 130. P. 364–375.
  • Anderson E.S., Oxenham A.J., Nelson P.B., Nelson D.A. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination on cochlear-implant users. J. Acoust. Soc. Am. 2012. V. 132. P. 3925–3934.
  • Aronoff J.M., Landsberger D.M. The development of a modified spectral ripple test. J. Acoust. Soc. Am. 2013. V. 134. P. EL217-222.
  • Bilsen F.A., Ritsma R.J. Repetition pitch and its implication for hearing theory // Acustica. 1969. V. 22. P. 63–68.
  • Chi T., Gao Y., Guyton M.G., Ru P., Shamma S. Spectrotemporal modulation transfer function and speech intelligibility. J. Acoust. Soc. Am. 1999. V. 106. P. 2719–2732.
  • Glasberg B.R., Moore B.C.J. Derivation of auditory filter shapes from notched-noise data. Hearing Res. 1990. V. 47. P. 103–138.
  • Green D. Frequency and the detection of spectral shape change. Auditory Frequency Selectivity. Ed. B.C.J. Moore, R.D. Patterson. Plenum, New York. 1986. P. 351–358.
  • Henry B. A., Turner C. W., Behrens A. Spectral peak resolution and speech recognition in quiet: Normal hearing, hearing impaired, and cochlear implant listeners J. Acoust. Soc. Am. 2005. V. 118. P. 1111–1121.
  • Jeon E.K., Turner C.W., Karsten S.A., Henry B.A., Gantz B.J. Cochlear implant users’ spectral ripple resolution. J. Acoust. Soc. Am. 2015. V. 138. P. 2350–2358.
  • Krumbholz K., Patterson R.D., Nobbe A. Asymmetry of masking between noise and iterated rippled noise: Evidence for time-interval processing in the auditory system. J. Acoust. Soc. Am. 2001. V. 110. P. 2096–2107.
  • Litvak L.M., Spah, A.J., Saoji A.A., Fridman, G.Y. Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners,” J. Acoust. Soc. Am. 2007. V. 122. P. 982–991.
  • Milekina O.N., Nechaev D.I., Supin A.Ya. Estimates of frequency resolving power of humans by different methods: the role of sensory and cognitive factors. Human Phisiol. 2018. V. 44. P. 357–363.
  • Moore B.C.J. Frequency difference limens for short-duration tones. J. Acoust. Soc. Am. 1973. V. 54. P. 610–619.
  • Narne V.K., Van Dun B., Bansal S., Prabhu L., Moore B.C.J. Effects of spectral smearing on performance of the spectral ripple and spectro-temporal ripple tests. J. Acoust. Soc. Am. 2016. V. 140. P. 4298–4306.
  • Nechaev D.I., Milekhina O.N., Supin A.Ya. Hearing sensitivity to gliding rippled spectrum patterns. J. Acoust. Soc. Am. 2018. V. 143. P. 2387–2393.
  • Nechaev D.I., Supin A.Ya. Hearing sensitivity to shifts of rippled-spectrum patterns. J. Acoust. Soc. Am. 2013. V. 134. P. 2913–2922.
  • Patterson R.D., Handel S., Yost W.A., Datta A.J. The relative strength of the tone and noise components in iterated rippled noise. J. Acoust. Soc. Am. 1996. V. 100. P. 3286–3294.
  • Saoji A.A., Litvak L., Spahr A.J., Eddins, D.A. Spectral modulation detection and vowel and consonant identification in cochlear implant listeners. J. Acoust. Soc. Am. 2009. V. 126. P. 955–958.
  • Sek A., Moore B.C.J. Frequency discrimination as a function of frequency, measured in several ways. J. Acoust. Soc. Am. 1995. V. 97. P. 2479–2486.
  • Supin A.Ya., Popov V.V., Milekhina O.N., Tarakanov M.B. Frequency resolving power measured by rippled noise. Hearing Res. 1994. V. 78. P. 31–40.
  • Supin A.Ya., Popov V.V., Milekhina O.N., Tarakanov M.B. Frequency-temporal resolution of hearing measured by rippled noise. Hearing Res. 1997. V. 108. P. 17–27.
  • Supin A.Ya., Popov V.V., Milekhina O.N., Tarakanov M.B. Ripple density resolution for various rippled-noise patterns. J. Acoust. Soc. Am. 1998. V. 103. P. 2042–2050.
  • Supin A.Ya., Popov V.V., Milekhina O.N., Tarakanov M.B. Ripple depth and density resolution in rippled noise. J. Acoust. Soc. Am. 1999. V. 106. P. 2800–2804.
  • Supin A.Ya., Popov V.V., Milekhina O.N., Tarakanov M.B. Rippled-spectrum resolution dependence on level. Hearing Res. 2003. V. 185. P. 1–12.
  • van Zanten G.A., Senten C.J.J. Spectro-Temporal Modulation Transfer Function (STMTF) for various types of temporal modulation and a peak distance of 200 Hz. J. Acoust. Soc. Am. 1983. V. 74. P. 52–62.
  • Won J.H., Drennan W.R., Rubinstein J.T. Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users. J. Assoc. Res. Otolaryngol. 2007. V. 8. P. 384–392.
  • Won J.H, Humphrey E.L., Yeager K.R., Martinez A.A., Robinson C.H., Mills K.E., Johnstone P.M., Moon I.J., Woo J. Relationship among the physiologic channel interactions, spectral-ripple discrimination, and vowel identification in cochlear implant users. J. Acoust. Soc. Am. 2014. V. 136. P. 2714–2725.
  • Yost W.A. Pitch strength of iterated rippled noise. J. Acoust. Soc. Am. 1996. V. 100. P. 3329–3335.
  • Yost W.A., Hill, R. Strength of the pitches associated with ripple noise. J. Acoust. Soc. Am. 1978. V. 64. P. 485–492.
  • Yost W.A., Hill R., Perez-Falcon T. Pitch and pitch discrimination of broadband signals with rippled power spectra. J. Acoust. Soc. Am. 1978. V. 63. P. 1166–1173.
  • Yost W.A., Patterson R.D., Sheft S. A time domain description for the pitch strength of iterated rippled noise. J. Acoust. Soc. Am. 1996. V. 99. P. 1066–1078.
  • Zwicker E. Masking and psychophysical excitation as consequences of the ear’s frequency analysis. Frequency Analysis and Periodicity Detection in Hearing. Ed. R. Plomp, G.F. Smoorenburg (Sijthoff, Leiden), 1970. P. 376–394.