• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Identity documents forgery detection with mobile devices

© 2019 D. V. Polevoy

Federal Research Center “Computer Science and Control” of RAS 19333 Moscow, Vavilova avenue, 44-2, Russia
National University of Science and Technology “MISIS” 119991 Moscow, Leninsky prospect, 4, Russia
Smart Engines Ltd., 117312 Moscow, 60-letiya Oktyabryaavenue, 9, Russia

Received 23 Nov 2018

There is a growing interest in using of identity documents images for users registration and identification in mobile and fintech services. At the same time, these technologies increase the risks of losses from fraud. This paper reviews approaches and methods for solving the actual problem of document fraud detection on mobile devices.

Key words: identity documents fraud detection, document image recognition, image processing, mobile device, smartphone, identification

DOI: 10.1134/S0235009219020070

Cite: Polevoy D. V. Ispolzovanie mobilnykh ustroistv dlya vyyavleniya priznakov fabrikatsii dokumentov, udostoveryayushchikh lichnost [Identity documents forgery detection with mobile devices]. Sensornye sistemy [Sensory systems]. 2019. V. 33(2). P. 142-156 (in Russian). doi: 10.1134/S0235009219020070

References:

  • Arlazarov V.V., Arlazarova A.R., Arlazarov N.V., Nikolaev D., Slavin O., Usilin S., Sheshkus A. Sistema dostupa k distancionnomu polucheniju bankovskih uslug [The system of access to remote banking services]. Patent for a useful model RF. № 161478. 2016.
  • Arlazarov V.V., Bulatov K.B., Uskov A.V. Model’ sistemy raspoznavanija ob#ektov v videopotoke mobil’nogo ustrojstva [A model of object recognition system in video stream of a mobile device]. Trudy ISA RAN[Proceedings of ISA RAS]. Special issue. 2018. P. 73–82. DOI: 10.14357/20790279180508 (in Russian).
  • Arlazarov V.V., Zhukovskiy A., Krivtsov V., Nikolaev D., Polevoy D. Analiz osobennostey ispolzovaniya statsionarnykh i mobilnykh malorazmernykh tsifrovykh video kamer dlya raspoznavaniya dokumentov [Analysis of the features of using stationary and mobile smallsized digital video cameras for document recognition]. Informatsionnye tekhnologii i vychislitelnye sistemy [Information technology and computing systems]. 2014. № 3. P. 71–78 (in Russian).
  • Arlazarov V.V., Matalov D.P., Usilin S.A. Lokalizacija obraza pechati na dokumente, udostoverjajushhem lichnost', metodom mashinnogo obuchenija [Localization of the seal on the identity document image using machine learning approach]. Trudy ISA RAN [Proceedings of ISA RAS]. Special issue. 2018. P. 158–166. DOI: 10.14357/20790279180518 (in Russian).
  • Arlazarov V.V., Nikolaev D.P.,Skoryukina N.S., Chernov T.S. Sposob detektirovanija golograficheskihj elementov v videopotoke [Method for detecting holographic elements in a video stream]. Patent RF. № 2644513. 2018.
  • Bezmaternyh P.V., Pliskin E.L., Farsobina V.V. Vychislitel’ny jkompleks dlja kontrolja kachestva raspoznavanija strukturirovannyh dokumentov [Information system for structured documents OCR quality control]. Informatsionnye tekhnologii I vychislitelnye sistemy [Information technology and computing systems]. 2018. № 2. P. 94–102. DOI: 10.14357/20718632180208 (in Russian).
  • Blokhinov Yu.B., Bondarenko A.V., Gorbachev V.A., Zheltov S.Yu., Rakutin Yu.O. Opredelenie podlinnosti banknot na osnove analiza izobrazhenij dlja smartfona [Сounterfeit bill detection by image analysis for smartphones]. Komp'juternaja optika [Computer Optics]. 2017. V. 41. № 2. P. 237–244. DOI: 10.18287/2412-6179-2017-41-2-237-244 (in Russian).
  • Blokhinov Yu.B., Gorbachev V.A. Analiz podlinnosti obrazcov zashhishhjonnoj pechatnoj produkcii s ispol’zovaniem smartfona [The authenticity analysis ofsamples of the protected printed materials with use of the smartphone]. Vestnik kompiuternykhin formatsionnykhtekhnologii [Herald of computer and information technologies]. 2016. V. 4. P. 23–29. DOI: 10.14489/vkit.2016.04 (in Russian).
  • Bulatov K. Vybor optimal’noj strategii kombinirovanija pokadrovyh rezul’tatov raspoznavanija simvola v videopotoke [Choosing the optimal strategy for combining frame-by-frame character recognition results in a video stream]. Informatsionnye tekhnologii ivychislitelnye sistemy [Information technology and computing systems.] 2017. № 3. P. 45–55 (in Russian).
  • Bulatov K.B., Ilin D.A., Polevoy D.V., Chernyshova Y.S. Problemy raspoznavanija mashinochitaemyh zon s ispol’zovaniem maloformatnyh cifrovyh kamer mobil’nyh ustrojstv [Problems of recognition of machinereadablezones using small-format digital cameras of mobile devices].Trudy ISA RAN [Proceedings of ISA RAS]. 2015. V. 65 (3). P. 85–93 (in Russian).
  • Vashkevich N.A., Rubis A.S. Sredstva zashhity i sposoby poddelki mashinoschityvaemyh proezdnyh dokumentov: uchebnoe posobie [Remedies and ways of machine readable travel documents forgeries: a tutorial]. Minsk. Law and Economics. 2017. 91 p. (in Russian).
  • Gayer A.V., Chernyshova Y.S., Sheshkus A.V. Generacija iskusstvennoj obuchajushhej vyborki dlja zadachi raspoznavanija simvolov polej pasporta RF [Artificial training data generation for the task of character recognition of fields of russian passport]. Sensornye sistemy [Sensory systems]. 2018. V. 32 (3). P. 230–235. DOI: 10.1134/S023500921803006X (in Russian).
  • Gayer A.V., Sheshkus A.V., Chernyshova Y.S. Augmentacija obuchajushhej vyborki “naletu” dlja obuchenija nejronnyh setej [Augmentation on the fly for the neural networks learning]. Trudy ISA RAN [Proceedings of ISA RAS]. Special issue. 2018. P. 150–157. DOI: 10.14357/20790279180517 (in Russian).
  • Gerasimov A. Cifrovoe moshennichestvo: riski i ushherb [Digital fraud: risks and damages]. URL: https://bosfera. ru/bo/cifrovoe-moshennichestvo-riski-i-ushcherb (accessed: 20.10.2018) (in Russian).
  • GOST R 54109-2010 Zashhitnye tehnologii. Produkcija poligraficheskaja zashhishhennaja. Obshhie tehnicheskie trebovanija [State Standard R 54109-2010. Protective technology. Printing products protected. General technical requirements]. Moscow, Standartinform Publ., 2011. 18 p (in Russian).
  • Emelyanov S.O., Ivanova A.A., Shvets E.A., Nikolaev D.P. Metody augmentacii obuchajushhih vyborok v zadachah klassifikaciii zobrazhenij [Methods of training data augmentation in the task of image classification]. Sensornye sistemy [Sensory systems]. 2018. V. 32 (3). P. 236–245. DOI: 10.1134/S0235009218030058 (inRussian).
  • Zhukovsky A.E. Metody mezhkadrovoj integracii rezul’tatov obnaruzhenija dokumentov v videopotoke mobil’nogo ustrojstva [Methods for interframe integration of document detection results in a video stream of a mobile device]. Trudy ISA RAN [Proceedings of ISA RAS]. Special issue. 2018. P. 15–22. DOI: 10.14357/20790279180502 (in Russian).
  • Ilin D.A. Bystraja lokalizacija tekstovyh polej na izobrazhenija dokumentov nizkogo kachestva [Fast words boundaries localization in text fields for low quality document images]. Trudy ISA RAN [Proceedings of ISA RAS]. Special issue. 2018. P. 192–198. DOI: 10.14357/20790279180522 (in Russian).
  • Consultant Plus. Spravochnaja informacija: “Dokumenty, udostoverjajushhie lichnost” [Reference information: “Identity documents”]. URL: http://www.consultant. ru/cons/cgi/online.cgi?req=doc&base=LAW&n=149244 (accessed: 20.10.2018) (in Russian).
  • Lynchenko A.E., Sheshkus A.V., Arlazarov V.L. Algoritm klassifikacii dokumentov na proektivno-iskazhennyh izobrazhenijah na osnove obuchaemoj metriki podobija [Identity document classifiaction algorithm based on similarity metric robust to projective distortions]. Trudy ISA RAN [Proceedings of ISA RAS]. Special issue. 2018. P. 167–173. DOI: 10.14357/20790279180519 (in-Russian).
  • NBKI.V 2015 godu bylo zafiksirovano 596 tysjach kreditov s priznakami moshennichestva. Jetona 12.6% bol’she, chem v 2014 godu [In 2015, 596 thousand loans with signs of fraud were recorded. This is 12.6% more than in 2014]. URL: https://www.nbki.ru/company/news/?id=12161&sphrase_id=116239 (accessed: 20.10.2018) (in Russian).
  • Odinokov S.B. Metody I optiko-jelektronnye pribory dlja avtomaticheskogo kontrolja podlinnosti zashhitnyh gologramm [Methods and optoelectronic devices for automatic control of the authenticity of security holograms]. M. Teshnosphera, 2013. 175 p. (in Russian).
  • Petrova O.O., Bulatov K.B. Metody post-obrabotki rezul’tatov raspoznavanija mashinochitaemoj zony dokumentov [Methods of machine-readable zone recognition results post-processing]. Trudy ISA RAN [Proceedings of ISA RAS]. Special issue. 2018. P. 43–50. DOI: 10.14357/20790279180505 (in Russian).
  • Polevoy D., Bulatov K., Skoryukina N., Chernov T., Arlazarov V.V., Sheshkus A. Kljuchevye aspekty raspoznavanija dokumentov s ispol’zovaniem malorazmernyh cifrovyh kamer [Key Aspects of Document Recognition Using Small Digital Cameras]. Vestnik RFFI [Herald of the RFBR]. 2016. V. 4. P. 97–108. DOI: 10.22204/2410-4639-2016-092-04-97-108 (in Russian).
  • Tropin D.V., Nikolaev D.P., Slugin D.G. Metod sovmeshhenija izobrazhenij na osnove maksimizacii rezkosti [The method of image alignment based on sharpness maximization]. Trudy ISA RAN [Proceedings of ISA RAS]. Special issue. 2018. P. 134–141. DOI: 10.14357/20790279180515 (in Russian).
  • Usilin S.A., Nikolaev D.P., Sholomov D.L., Arlazarov V.V. Raspoznavanie gil’oshirnyh jelementov: opredelenie stranic pasporta RF [Guilloche Elements Recognition Applied to Passport Page Processing]. Trudy ISA RAN [Proceedings of ISA RAS]. 2013. V. 63 (3). P. 106–110 (in Russian).
  • CB RF. Osnovnye napravlenija razvitija finansovyh tehnologij na period 2018–2020 gg. [The main directions of development of financial technologies for the period 2018–2020 yy.] URL: https://www.cbr.ru/content/document/file/35816/on_fintex_2017.pdf (accessed: 20.10.2018) (in Russian).
  • Shemiakina J.A., Zhukovsky A.E., Konovalenko I.A., Nikolaev D.P. Algoritm avtomaticheskogo kadrirovanija cifrovyh izobrazhenij pri proektivnom preobrazovanii [Algorithm for automatic framing of digital images under projective transformation]. Trudy ISA RAN [Proceedings of ISA RAS]. Special issue. 2018. P. 142–149. DOI: 10.14357/20790279180516 (in Russian).
  • Arlazarov V. V., Bulatov K., Manzhikov T., Slavin O., Yanishevskiy I. Method of determining the necessary number of observations for video stream documents recognition. Proc. SPIE 10696, Tenth International Conference on Machine Vision (ICMV 2017). 2018. V. 106961X. P. 1–6. DOI: 10.1117/12.2310132.
  • Arlazarov V.V., Bulatov K., Chernov T., Arlazarov V.L. MIDV-500: A Dataset for Identity Documents. URL: https://arxiv.org/pdf/1807.05786.pdf (дaтa oбpaщeния: 20.10.2018).
  • Artaud C., Sidère N., Doucet A., Ogier J.-M., Poulain V. Find it! Fraud Detection Contest Report. 24th International Conference on Pattern Recognition (ICPR 2018). 2018.
  • Awal A.-M., Ghanmi N., Sicre R., Furon T. Complex Document Classification and Localization Application on Identity Document Images.14th IAPR International Conference on Document Analysis and Recognition (ICDAR 2017). 2017. P. 426–431. DOI: 10.1109/ICDAR. 2017.77.10.1109/ICDAR.2017.77
  • Baluja S. Learning typographic style.URL: https://arxiv. org/pdf/1603.04000 (дaтa oбpaщeния 20.10.2018).
  • Berenguel A., Terrades O.R., Llados J., Canero C. Banknote Counterfeit Detection through Background Texture Printing Analysis. 12th IAPR Workshop on Document Analysis Systems (DAS). 2016. P. 66–71. DOI: 10.1109/das.2016.34.
  • Bertrand R., Terrades O. R., Gomez-Kramer P., Franco P., Ogier J.-M. A conditional random field model for font forgery detection.13th International Conference on Document Analysis and Recognition (ICDAR 2015). 2015. V. 576–580.
  • Bezmaternykh P. V., Nikolaev D. P., Arlazarov V. L. Textual Blocks Rectification Method Based on Fast Hough Transform Analysis in Identity Documents Recognition. Proc. SPIE 10696, Tenth International Conference on Machine Vision (ICMV 2017). 2018. V. 1069606. P. 1–6. DOI: 10.1117/12.2310162.
  • Boulkenafet Z., Akhtar Z., Feng X., Hadid A. Face Antispoofing in Biometric Systems.Biometric Security and Privacy. Ed. Jiang R. Springer. 2017. P. 299–321. DOI: 10.1007/978-3-319-47301-7_13
  • Bulatov K., Arlazarov V.V., Chernov T., Slavin O., Nikolaev D. Smart IDReader: Document Recognition in Video Stream. 14th IAPR International Conference on Document Analysis and Recognition (ICDAR 2017). 2017. P. 39–44. DOI: 10.1109/ICDAR.2017.347.
  • Burie J.C., Chazalon J., Coustaty M., Eskenazi S., Luqman M.M., Mehri M., Nayef N., Ogier J.M., Prum S., Rusinol M. ICDAR 2015 competition on smartphone document capture and OCR (SmartDoc). Proc. of the Intl. Conf. on Document Analysis and Recognition (ICDAR 2015). 2015. P. 1161–1165.
  • Chazalon J., Gomez-Kramer P., Burie J.-C., Coustaty M., Eskenazi S., Luqman M., Nayef N., Rusinol M., Sidere N., Ogier J.-M. SmartDoc 2017 Video Capture: Mobile Document Acquisition in Video Mode. Proc. of the Conf. on Document Analysis and Recognition (ICDAR 2017).2017. DOI: 10.1109/icdar.2017.306.
  • Chen G., Yang J., Jin H., Brandt J., Shechtman E., Agarwala A., Han T. X., Large-scale visual font recognition. Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014). 2014. P. 3598–3605. DOI: 10.1109/CVPR.2014.460.
  • Chernov T.S., Nikolaev D.P., Kliatskine V.M. A Method of Periodic Pattern Localization on Document Images. Proceedings SPIE 9875, Eighth International Conference on Machine Vision (ICMV 2015).2015. V. 987504. P. 1–7. DOI: 10.1117/12.2228600.10.1117/12.2228600
  • Chernov T.S., Kolmakov S.I., Nikolaev D.P. An algorithm for detection and phase estimation of protective elements periodic lattice on document image. Pattern Recognition and Image Analysis. 2017. V. 27. № 1. P. 53–65 DOI: 10.1134/S1054661817010023
  • Chernov T.S., Razumnuy N.P., Kozharinov A.S., Nikolaev D.P., Arlazarov V.V. Image quality assessment for video stream recognition systems. Proc. SPIE 10696, Tenth International Conference on Machine Vision (ICMV 2017). 2018. V. 106961U. P. 1–8. DOI: 10.1117/12.2309628.
  • Chernyshova Y.S., Gayer A.V., Sheshkus A.V. Generation method of synthetic training data for mobile OCR system. Proc. SPIE 10696, Tenth International Conference on Machine Vision (ICMV 2017). 106962G. 2018. P. 1–7. DOI: 10.1117/12.2310119.
  • Chernyshova Y.S., Aliev M.A., Sheshkus A.V. Optical font recognition in images captured with smartphones, and its applicability for detecting forgery of identity documents. URL: https://arxiv.org/abs/1810.08016 (дaтa oбpaщeния: 20.10.2018).
  • Cook S. Selfie banking: is it a reality? Biometric Technology Today. 2017. V. 3. P. 9–11.
  • Dewaele T., Diephuis M., Holotyak T., Voloshynovskiy S. Forensic authentication of banknotes on mobile phones. Electronic Imaging. 2016. V. 8. P. 1–8. DOI: 10.2352/issn.2470-1173.2016.8.mwsf-083
  • Dittimi T.V., Suen C.Y. Mobile App for Detection of Counterfeit Banknotes. Lecture Notes in Computer Science. 2018. V. 10832. P. 156–168. DOI: 10.1007/978-3-319-89656-4_13
  • Folego G., Angeloni M. A., Stuchi J. A., Godoy A., Rocha A. Cross-domain face verification: Matching ID document and self-portrait photographs.XII Workshop de VisãoComputacional. 2016. P. 311–316.
  • Gaia K., Qiua M., Suna X. A survey on fintech.Journal of Network and Computer Applications. 2018. V. 103. P. 262–273.
  • Hartl A., Arth C., Grubert J., Schmalstieg D. Efficient Verification of Holograms Using Mobile Augmented Reality. Transactions on Visualization and Computer Graphics. 2016. V. 22. № 7. P. 1843–1851.
  • Hartl A., Arth C., Schmalstieg D. AR-Based Hologram Detection on Security Documents Using a Mobile Phone. Lecture Notes in Computer Science. 2015. V. 8888. P. 335–346. DOI: 10.1007/978-3-319-14364-4_32
  • Hartl A., Grubert J., Schmalstieg D., Reitmayr G. Mobile interactive hologram verification. Proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR). 2013. P. 75–82.
  • Ilin D., Limonova E., Arlazarov V., Nikolaev D. Fast Integer Approximations In Convolutional Neural Networks Using Layer-By-Layer Training. Proceedings SPIE 10341, Ninth International Conference on Machine Vision (ICMV 2016). 2017. V. 103410Q. P. 1–5. DOI: 10.1117/12.2268722.
  • Kumar J., Ye P., Doermann D. A dataset for quality assessment of camera captured document images. Proc. of the International Workshop on Camera-Based Document Analysis and Recognition (CBDAR 2013). 2013. P. 113–125.
  • Kwon Y.-B., Kim J.-H. Recognition based verification for the machine readable travel documents. International Workshop on Graphics Recognition (GREC 2007). 2007.
  • Limonova E.E., Bezmaternykh P., Nikolaev D., Arlazarov V. Slant Rectification in Russian Passport OCR System Using Fast Hough Transform. Proceedings SPIE 10341, Ninth International Conference on Machine Vision (ICMV 2016).2017. V. 10341. № 103410P. P. 1–5. DOI: 10.1117/12.2268725.
  • Nayef N., Luqman M., Prum S., Eskenazi S., Chazalon J., Ogier J.-M. SmartDoc-QA: A dataset for quality assessment of smartphone captured document imagessingle and multiple distortions. Proc. of the Conf. on Document Analysis and Recognition (ICDAR 2015). 2015. P. 1231–1235.
  • Ngoc M.O., Fabrizio J., Geraud T. Saliency-Based Detection of Identy Documents Captured by Smartphones. 13th IAPR International Workshop on DocumentAnalysis Systems (DAS 2018). 2018. DOI: 10.1109/das.2018.17.
  • Oliveira J. S., Souza G. B., de Rezende R. A., de Deus F. E., Marana A. N. Cross-domain deep face matching for real banking security systems. URL: https://arxiv. org/abs/1806.07644 (дaтa oбpaщeния: 20.10.2018).
  • Puybareau E., Geraud T. Real-Time Document Detection in Smartphone Videos. 25th IEEE International Conference on Image Processing (ICIP 2018). 2018. DOI: 10.1109/icip.2018.8451533.
  • Rahman U., Sargano A., Bajwa U. Android-Based Verification System for Banknotes. Journal of Imaging. 2017. V. 3. № 54.DOI: 10.3390/jimaging3040054
  • Satkhozhina A., Ahmadullin I., Allebach J. P. Optical font recognition using conditional random field. Proceedings of the 2013 ACM Symposium on Document Engineering (DocEng ’13). 2013. P. 119–122. DOI: 10.1145/2494266.2494307.
  • Simon M., Rodner E., Denzler J. Fine-grained classification of identity document types with only one example. 14th IAPR International Conference on Machine Vision Applications (MVA 2015). 2015. P. 126–129. DOI: 10.1109/MVA.2015.7153149.
  • Shemyakina J., Zhukovskiy A., Nikolaev D. The Method for Homogrpahy Estimation between Two Planes Based on Lines and Points. Proc. SPIE 10696, Tenth International Conference on Machine Vision (ICMV 2017). 2018. V. 106961G. P. 1–20. DOI: 10.1117/12.2310111.
  • Sheshkus A., Limonova E., Nikolaev D., Krivtsov V. Combining Convolutional Neural Networks and Hough Transform for Classification of Images Containing Lines. Proceedings SPIE 10341, Ninth International Conference on Machine Vision (ICMV 2016). 2017. V. 103411C. P. 1–5. DOI: 10.1117/12.2268717.
  • Sicre R., MontaserAwal A., Furon T. Identity documents classification as an image classification problem.19th International Conference on Image Analysis and Processing (ICIAP 2017). 2017. P. 602–613. DOI: 10.1007/978-3-319-68548-9_55
  • Sidere N., Cruz F., Coustaty M., Ogier J.-M. A dataset for forgery detection and spotting in document images. Proc. of the Seventh International Conference on Emerging Security Technologies (EST 2017). 2017. P. 26–31. DOI: 10.1109/est.2017.8090394
  • Skoryukina N., Nikolaev D.P., Sheshkus A., Polevoy D. Real time rectangular document detection on mobile devices. Proc. SPIE 9445, Seventh International Conference on Machine Vision (ICMV 2014). 2015. V. 94452A. P. 1–6.
  • Skoryukina N., Shemyakina J., Arlazarov V. L., Faradzhev I. Document localization algorithms based on feature points and straight lines. Proc. SPIE 10696, Tenth International Conference on Machine Vision (ICMV2017). 2018. V. 106961H. P. 1–8. DOI: 10.1117/12.2311478.
  • Usilin S., Nikolaev D., Postnikov V., Schaefer G. Visual appearance based document image classification. Proc. of the IEEE International Conference on Image Processing. 2010. P. 2133–2136.DOI: 10.1109/ICIP. 2010.5652024.
  • Vironit. A Real-time Document Recognition SDK Comparison. URL: https://vironit.com/a-real-time-documentrecognition-sdk-comparison (дата обращения: 20.10.2018).
  • Wang X. Bissacco A., Berntson G., Nazif M., Scheiner J., Shih S., Snyder M., Talavera D. Client side filtering of card OCR images. Patent US. № 8,903,136. 2014
  • Wang Z., Yang J., Jin H., Shechtman E., Agarwala A., Brandt J., Huang T. S. DeepFont, Identify your font from an image. In Proceedings of the 23rd ACM International Conference on Multimedia. 2015. P. 451–459.
  • Wang Z. Deep Learning for Font Recognition and Retrieval. Applied Cloud Deep Semantic Recognition Advanced Anomaly Detection. 2018. Auerbach Publications. P. 109–130.
  • Williem C. Simon S. Cho and I. K. Park. Fast and Robust Perspective Rectification of Document Images on a Smartphone. Proc. IEEE (CVPRW 2014). 2014. P. 197–198.
  • Winarski T.Y. Selfie financial security transaction system. Patent US. No. US20160071101A1. 2016.
  • Xu Y., Carlinet E., Géraud T., Najman L. Hierarchical Segmentation Using Tree-Based Shape Spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017. V. 39. № 3. P. 457–469.
  • Zhukovsky A., Nikolaev D., Arlazarov V., Postnikov V., Polevoy D., Skoryukina N., Chernov T., Shemiakina J., Mukovozov A., Konovalenko I., Povolotsky M. Segments Graph-Based Approach for Document Capture in a Smartphone Video Stream. Proceedings of the International Conference on Document Analysis and Recognition (ICDAR). 2017. V. 1. P. 337–342. DOI: 10.1109/ICDAR.2017.63
  • Zramdini A., Ingold R. Optical font recognition using typographical features. IEEE Trans. Pattern Anal. Mach. Intell. 1998. V. 20. P. 877–882.