• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Finding the correspondence between closed curves under projective distortions

© 2018 A. V. Savchik, V. A. Sablina

Institute for Information Transmission Problems RAS 127051 Moscow, Bolshoi Karetny per., 19
Ryazan State Radio Engineering University (RSREU) 390005 Ryazan, ul. Gagarina, 59/1

Received 04 Sep 2017

In this paper, the problem of finding a correspondence between closed contours of objects on a pair of images under small projective distortion is investigated. Several methods are considered and compared. Sufficient conditions for the applicability of the map-to-nearest method are given and proved.

Key words: projective transformation, object contour mapping, technical vision, image alignment, contour analysis

DOI: 10.7868/S0235009218010092

Cite: Savchik A. V., Sablina V. A. Ustanovlenie sootvetstviya mezhdu zamknutymi konturami obektov pri proektivnykh iskazheniyakh [Finding the correspondence between closed curves under projective distortions]. Sensornye sistemy [Sensory systems]. 2018. V. 32(1). P. 60-66 (in Russian). doi: 10.7868/S0235009218010092

References:

  • Gurov V.S., Kolod'ko G.N., Kostjashkin L.N., Loginov A.A., Muratov E.R., Nikiforov M.B., Novikov A.I., Pavlov O.V., Romanovskij Ju.M., Sablina V.A., Jukin S.A. Obrabotka izobrazhenii v aviatsionnykh sistemakh tekhnicheskogo zreniya [Image Processing in the Aviation Computer Vision Systems]. Moscow. FIZMATLIT, 2016. 240 p. (in Russian).
  • Nikolayev P.P., Nikolayev D.P. Proektivno invariantnoe raspoznavanie ploskikh konturov na primere krivykh s simmetriyami [Projectively invariant recognition of plane contours on the example of centrally symmetric curves]. Trudy ISA RAN [Proceedings of ISA RAS]. 2009. V. 45. P. 209–221 (in Russian).
  • Furman Ja.A., Kreveckij A.V., Peredreev A.K., Rozhencov A.A., Hafizov R.G., Egoshina I.L., Leuhin A.N. Vvedenie v konturnyi analiz; prilozheniya k obrabotke izobrazhenii i signalov [Contour Analysis Introduction and it’s Image and Signal Processing Application]. Moscow. FIZMATLIT, 2002. 592 p. (in Russian).
  • Åström K. Fundamental Difficulties With Projective Normalization of Planar Curves. Applications of Invariance in Computer Vision: Second Joint European-US Workshop Proceedings. Joseph L. Mundy. Berlin. Springer. 1993. P. 199–214. DOI: 10.1007/3-540-58240-1_1
  • Hartley R.I., Zisserman A. Multiple View Geometry in Computer Vision. 2nd edition. Cambridge University Press, 2003. 673 p.
  • Hoff D.J., Olver P.J. Extensions of invariant signatures for object recognition. Journal of mathematical imaging and vision. 2013. V. 45(2). P. 176–185. DOI: 10.1007/s10851-012-0358-7
  • Novikov A.I., Sablina V.A., Efimov A.I., Nikiforov M.B. Contour Analysis in the Tasks of Real and Virtual Images Superimposition. Journal of Coupled Systems and Multiscale Dynamics. 2016. V. 4(4). P. 251–259. DOI: 10.1166/jcsmd.2016.1112
  • Novikov A.I., Sablina V.A., Nikiforov M.B., Loginov A.A. The Contour Analysis and Image-Superimposition Problem in Computer Vision Systems. Pattern Recognition and Image Analysis. 2015. V. 25(1) P. 73–80. DOI: 10.1134/S1054661815010149
  • Sablina V.A., Efimov A.I., Novikov A.I. Combined Approach to Object Contour Superimposition in Heterogeneous Images. Proceedings on the 6th Mediterranean Conference on Embedded Computing (MECO). IEEE. 2017. P. 120–123. DOI: 10.1109/MECO.2017.7977175
  • Younes L. Optimal Matching Between Shapes Via Elastic Deformations. Image and Vision Computing. 1999. V. 17(5–6). P. 381–389. DOI: 10.1016/S0262-8856(98)00125-5