• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

The algorithm of epipole position estimation under pure camera translation

© 2018 A.A. Ovchinkin, E.I. Ershov

Institute for Infromation Transmission Problems RAS 127051 Moscow, Bolshoy Karetny per., 19

Received 09 Aug 2017

In this paper we introduced a method of solving the problem of epipole position estimation for the case of camera pure translation with use of Fast Hough Transform (FHT). Moreover, we suggested a way of refining the result obtained with this method. In this case, FHT is used for effective outlier filtering. The paper contains accuracy and run-time comparison of the suggested method and classical technique of solving the problem using RANSAC and least squares methods. The results show the superiority of the proposed method.

Key words: epipolar geometry, vanishing point, epipole, Hough transform, camera calibration

DOI: 10.7868/S0235009218010079

Cite: Ovchinkin A. A., Ershov E. I. Algoritm opredeleniya polozheniya puchka epipolyarnykh linii dlya sluchaya pryamolineinogo dvizheniya kamery [The algorithm of epipole position estimation under pure camera translation]. Sensornye sistemy [Sensory systems]. 2018. V. 32(1). P. 42-49 (in Russian). doi: 10.7868/S0235009218010079

References:

  • Asvatov E.N., Ershov E.I., Nikolaev D.P. Robastnaya ortogonal'naya lineinaya regressiya dlya malomernykh gistogramm [Robust orthogonal linear regression on histogram in small-dimensional spaces]. Sensornye sistemy [Sensors systems]. 2017. V. 31(4). S. 331–342.
  • Bezmaternykh P.V., Khanipov T.M., Nikolaev D.P. Reshenie zadachi lineinoi regressii s pomoshch'yu bystrogo preobrazovaniya Khafa [Linear regression problem solution using fast Hough transform]. Informatsionnye tekhnologii i sistemy [Information technology and systems]. 2012. P. 354–359.
  • Brady M.L. A fast discrete approximation algorithm for the Radon transform. SIAM Journal on Computing. 1998. Т. 27. № 1. С. 107–119. DOI: 10.1137/S0097539793256673.
  • Caprile B., Torre V. Using vanishing points for camera calibration. International journal of computer vision. 1990. Т. 4. № 2. С. 127–139. DOI: 10.1007/BF00127813.
  • Chen Z., Pears N., McDermid J., Heseltine T. Epipole estimation under pure camera translation. DICTA. 2003. Т. 3. С. 849–858.
  • Geiger A., Lenz P., Urtasun R. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. Conference on Computer Vision and Pattern Recognition (CVPR). 2012.
  • Hartley R., Zisserman A. Multiple view geometry in computer vision. Cambridge. Cambridge university press, 2003. DOI: 10.1017/CBO9780511811685.
  • Itseez G. Open Source Computer Vision Library. URL: https://github.com/itseez/opencv (accessed: 9.08.2017)
  • Li H., Hartley R. Five-point motion estimation made easy. 18th International Conference on Pattern Recognition. 2006. Т. 1. С. 630–633. DOI: 10.1109/ICPR.2006.579.
  • Levenberg K. A Method for the Solution of Certain NonLinear Problems in Least Squares. Quarterly of Applied Mathematics. 1944. Т. 2. С. 164–168. DOI: 10.1090/qam/10666.
  • Longuet-Higgins C. A computer algorithm for reconstructing a scene from two projections. Readings in Computer Vision: Issues, Problems, Principles, and Paradigms. 1987. С. 61–62. DOI: 10.1016/B978-0-08-051581-6.50012-X.
  • Nikolaev D.P., Karpenko S.M., Nikolaev I.P., Nikolayev P.P. Hough transform: underestimated tool in the computer vision field. Proceedings of the 22th European Conference on Modelling and Simulation. 2008. С. 238–246. DOI: 10.7148/2008-0238.
  • Nister D. An efficient solution to the five-point relative pose problem. IEEE transactions on pattern analysis and machine intelligence. 2004. Т. 26. № 6. P. 756–770. DOI: 10.1109/TPAMI.2004.17.
  • Ovchinkin A.A., Ershov E.I. Statistical analysis of the characteristics of high degree polynomial solving methods used in the five-point algorithm. 2016 International Conference on Robotics and Machine Vision. International Society for Optics and Photonics. 2017. С. 102530L‑102530L. DOI: 10.1117/12.2266366.
  • Zhang Z., Luong Q., Faugeras O. Motion of an uncalibrated stereo rig: Self-calibration and metric reconstruction. IEEE transactions on Robotics and Automation. 1996. С. 12. № 1. С. 103–113. DOI: 10.1109/70.481754.