• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Modelling of the unmanned aerial vehicle navigation on the basis of two height-shifted onboard cameras

© 2018 A. K. Popov, A. B. Miller, K. V. Stepanyan, B. M. Miller

Institute for Information Transmission Problems of RAS (Kharkevich Institute), 127051 Moscow, Bolshoy Karetny per., 19

Received 28 Sep 2017

Automatic landing of unmanned aerial vehicle (UAV) is non-trivial issue, demanding resolution of the whole spectrum of technical and computing problems. At the final stage of landing the errors level of existing navigation means may not be acceptable for autonomous landing. It is desirable to have an additional sensor, which makes it possible to reliably estimate the height above the runway. With the help of the so-called optical flow (OF), determined by the sequence of images recorded by a single on-board camera, one can estimate the velocities of the UAV, but it is necessary to know the height and angular position values. The UAV, equipped with a pair of height-shifted cameras recording images of the underlying surface, can estimate both speed and altitude. With the help of the IMODEL software, the modelling of image sequences recorded by a pair of height-shifted on-board cameras was carried out and the altitude estimation method have been verified.

Key words: navigation, UAV, optical flow, Kalman filter

DOI: 10.7868/S0235009218010043

Cite: Popov A. K., Miller A. B., Stepanyan K. V., Miller B. M. Modelirovanie protsessa navigatsii bespilotnogo letatelnogo apparata s ispolzovaniem dvukh bortovykh kamer, smeshchennykh po vysote [Modelling of the unmanned aerial vehicle navigation on the basis of two height-shifted onboard cameras]. Sensornye sistemy [Sensory systems]. 2018. V. 32(1). P. 19-25 (in Russian). doi: 10.7868/S0235009218010043

References:

  • Miller B.M., Rubinovich E.Ya. Problemy kompleksirovaniya optiko-elektronnykh sistem nablyudeniya s navigatsionnymi sistemami BPLA [Data fusion problems of optoelectronic systems with naviagation systems of UAV] Trudy XII Vserossiiskogo soveshchaniya po problemam upravleniya (VSPU‑2014) [Proceedings of the 12th All-Russian Workshop on Control Problems], 16–19 June, Moscow.2014. P. 3657–3670 (in Russian).
  • Miller B.M., Stepanyan K.V., Popov A.K., Miller A.B. Navigatsiya BPLA na osnove posledovatel’nostei izobrazhenii, registriruemykh bortovoi videokameroi. [Navigation of UAV on the basis of video sequences captured by on-board video camera] Avtomatika i telemekhanika. [Automation Remote Control]. 2017. № 12. P. 141–154 (in Russian).
  • Miller B.M., Fedchenko G.I. Vliyanie oshibok orientatsii nositelya na sdvig izobrazheniya pri fotografirovanii s dvizhushchegosya ob“ekta [An influence of carrier orientation errors on image shift in photography from moving object]. Izvestiya VUZov, Geodeziya i Aerofotos” emka [Izvestiya VUZov, Geodesy and Aerial Photography]. 1984. № 5. P. 75–80 (in Russian).
  • Popov A.K., Stepanyan K.V., Miller B.M., Miller A.B. Programmnyi kompleks IMODEL dlya issledovaniya svoistv algoritmov upravleniya ili navigatsii BPLA po nablyudeniyam podstilayushchei poverkhnosti [Software complex IMODEL for research algorithms properties for the UAV control or navigation driven with tha aid of the observations of the underlying surface]. Materialy XX Yubileinoi Mezhdunarodnoi konferentsii po Vychislitel’noi mekhanike i sovremennym prikladnym programmnym sistemam (VMSPPS 2017). [Proceedings of XX Anniversary International Conference on Computational Mechanics and Modern Applied Software Systems (CMMASS’2017)]. 2017. P. 607–608.
  • Sinitsyn I.N. Fil’try Kalmana i Pugacheva. Uchebnoe posobie. [Kalman and Pugachev filters. Tutorial.] M.: Universitetskaya kniga, Logos, 2006. 640 p. (in Russian).
  • Aggarwal J.K., Nandakumar N. On the Computation of Motion from Sequences of Images-A Review. Proceedings of the IEEE. 1988. V. 76. № 8. P. 917–935.
  • Chahl J., Rosser K., Mizutani A. Vertically displaced optical flow sensors to control the landing of a UAV. Proc. SPIE 7975, Bioinspiration, Biomimetics, and Bioreplication, 797518 (March 23, 2011). DOI: 10.1117/12.880715
  • Chahl J., Rosser K., Mizutani A. Vertically displaced optical flow sensors to control the landing of a UAV. Proc. SPIE 7975, Bioinspiration, Biomimetics, and Bioreplication, 797518 (March 23, 2011). DOI: 10.1117/12.880715
  • Forsyth D.A., Ponce J. Computer Vision: A Modern Approach. Prentice Hall Professional Technical Reference. 2002.
  • Kistlerov V.L., Kitsul P.I., Miller B.M. Computer-aided design of the optical devices control systems based on the language of algebraic computation FLAC. Mathematics and Comp. Simulation. 1991. V. 33. P. 303–307. DOI: 10.1016/0378-4754(91)90109-G
  • Liau Y.S., Zhang Q., Li Y., Ge S.S. Non-metric navigation for mobile robot using optical flow. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura. 2012. P. 4953–4958. DOI: 10.1109/IROS.2012.6386221
  • Lucas B., Kanade T. An iterative image registration technique with an application to stereo vision. IJCAI’81 Proceedings of 7th International Joint Conference on Artificial Intelligence, Vancouver, Canada. 1981. V. 2. P. 674–679.
  • McCarthy C., Barnes N. A Unified Strategy for Landing and Docking Using Spherical Flow Divergence. IEEE Transactions on Pattern Analysis and Machine Intelligence. May, 2012. V. 34. № 5. P. 1024–1031. DOI: 10.1109/TPAMI.2012.27
  • Popov A., Miller A., Miller B., Stepanyan K. Application of the Optical Flow as a Navigation Sensor for UAV. Proceedings of the 39th IITP RAS Interdisciplinary Conference & School September, 7–11, Olympic Village, Sochi, Russia. 2015. P. 390–398.
  • Popov A., Miller A., Miller B., Stepanyan K. Estimation of velocities via Optical Flow. 2016 International Conference on Robotics and Machine Vision. September 14, Moscow, Russia. 2016a. Proceedings of SPIE. V. 10253. P. 1025303-(1–5). DOI: 10.1117/12.2266365
  • Popov A., Miller A., Miller B., Stepanyan K. Optical Flow and Inertial Navigation System Fusion in UAV Navigation. Conference on Unmanned/Unattended Sensors and Sensor Networks XII, September 26, Edinburgh, United Kingdom. 2016b. Proceedings of SPIE. V. 9986. P. 998606-(1–16). DOI: 10.1117/12.2241204
  • Popov A., Miller A., Miller B., Stepanyan K., Konovalenko I., Sidorchuk D., Koptelov I. UAV navigation on the basis of video sequences registered by onboard camera. Proceedings of the 40th Interdisciplinary Conference & School “Information Technology and Systems 2016”, September, 25–30, Repino, St. Petersburg, Russia. 2016c. P. 370–376.
  • Popov A., Miller B., Miller A., Stepanyan K. Optical Flow as a Navigation Means for UAVs with Opto-electronic Cameras. Proceedings of 56th Israel Annual Conference on Aerospace Sciences, Tel-Aviv and Haifa, Israel, March 9–10, ThL2T5.2. 2016d.
  • Sebesta K., Baillieu J.B. Animal-Inspired Agile Flight Using Optical Flow Sensing. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI. 2012. P. 3727–3734. DOI: 10.1109/CDC.2012.6426163
  • Serra P., Cunha R., Silvestre C., Hamel T. Visual Servo Aircraft Control for Tracking Parallel Curves. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI. 2012. P. 1148–1153. DOI: 10.1109/CDC.2012.6426240
  • Serra P., Le Bras F., Hamel T., Silvestre C., Cunha R. Nonlinear IBVS Controller for the Flare Maneuver of Fixed- Wing Aircraft using Optical Flow. 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA. 2010. P. 1656–1661. DOI: 10.1109/CDC.2010.5717829