• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Fusion of radar, visible and thermal imagery with account for differences in brightness and chromaticity perception

© 2018 D. S. Sidorchuk, V. V. Volkov

Institute for Information Transmission Problems RAS 127051, Moscow, Bolshoy Karetny per., 19

Received 07 Aug 2017

This paper addresses the problem of image fusion of optical (visible and thermal domain) data and radar data for the purpose of visualization. These types of images typically contain a lot of complimentary information, and their joint visualization can be useful and more convenient for human user than a set of individual images. To solve the image fusion problem we propose a novel algorithm that utilizes some peculiarities of human color perception and based on the grey-scale structural visualization. Benefits of presented algorithm are exemplified by satellite imagery.

Key words: image fusion, structural visualization, human color perception

DOI: 10.7868/S0235009218010031

Cite: Sidorchuk D. S., Volkov V. V. Kompleksirovanie radiolokatsionnykh izobrazhenii i opticheskikh snimkov v vidimom i teplovom diapazonakh s uchetom razlichii v vospriyatii yarkosti i tsvetnosti [Fusion of radar, visible and thermal imagery with account for differences in brightness and chromaticity perception]. Sensornye sistemy [Sensory systems]. 2018. V. 32(1). P. 14-18 (in Russian). doi: 10.7868/S0235009218010031

References:

  • Sidorchuk D.S., Konovalenko I.A., Gladilin S.A., Maximov Y.I. Otsenka shumnosti kanalov v zadache vizualizatsii mul’tispektral’nykh izobrazhenii [Noise estimation for multispectral visualization]. Sensornye sistemy [Sensory systems]. 2016. V. 30(4). P. 344–350 (in Russian).
  • Amitrano D., Cecinati F., Di Martino G. An end-useroriented framework for RGB representation of multitemporal SAR images and visual data mining. Proc. of SPIE Vol. 10004, id. 100040Y7 p. 2016. V. 4. DOI: 10.1117/12.2241257.
  • Di Zenzo S. A note on the gradient of a multi-image. Comp. Vis., Graphics and Image Proc. 1986. V. 33 (1). P. 116–125.
  • Errico A., Angelino C.V., Cicala L. Detection of environmental hazards through the feature-based fusion of optical and SAR data: a case study in southern Italy. Int. J. Remote Sens. 2015. V. 36 (13). P. 3345–3367. DOI: 10.1080/01431161.2015.1054960.
  • Ferretti A., Monti-Guarnieri A., Prati C. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. Noordwijk. ESA Publications, ESTEC. 2007. 246 p.
  • Hanbury A. Constructing cylindrical coordinate colour spaces. Pattern Recognition Letters. 2008. V. 29(4). P. 494–500. DOI: 10.1016/j.patrec.2007.11.002.
  • Levkowitz H. Color theory and modeling for computer graphics, visualization, and multimedia applications. Norwell. Kluwer Academic Publishers. 1997. 219 p.
  • Liao D., Qian Y., Zhou J., Tang Y.Y. A manifold alignment approach for hyperspectral image visualization with natural color. IEEE Trans. Geosci. Remote Sens. 2016. V. 54 (6). P. 3151–3162. DOI: 10.1109/TGRS.2015.2512659.
  • Nikolaev D., Karpenko S. Color-to-grayscale image transformation preserving the gradient structure. In proc. of 20th ECMS. 2006. P. 427–430.
  • Piella G. Image fusion for enhanced visualization: A variational approach. Int. J. Comput. Vis. 2009. V. 83 (1). P. 1–11. DOI: 10.1007/s11263–009–0206–4.
  • Sidorchuk D., Konovalenko I., Gladilin S., Maximov Y. Noise estimation for color visualization of multispectral images. Proc. SPIE, 2016 Internat. Conf. on Robotics and Machine Vision. 2017. P. 1025307–1025307. DOI: 10.1117/12.2266352.
  • Socolinsky D.A., Wolff L.B. Multispectral image visualization through first-order fusion. IEEE Trans. Image Process. 2002. V. 11 (8). P. 923–931.
  • Sokolov V., Nikolaev D., Karpenko S., Schaefer G. On contrast-preserving visualisation of multispectral datasets. Adv. Vis. Comp. 2010. P. 173–180.
  • Wachtler T., Wehrhahn C. The Craik – O’Brien – Cornsweet Illusion in Colour: Quantitative Characterisation and Comparison with Luminance. Perception. 1997. V. 26(11). P. 1423–1430.
  • Wilson T.A., Rogers S.K., Kabrisky M. Perceptual-based image fusion for hyperspectral data. IEEE Trans. Geosci. Remote Sens. 1997. V. 35 (4). P. 1007–1017.