This paper addresses the problem of image fusion of optical (visible and thermal domain) data and radar data for the
purpose of visualization. These types of images typically contain a lot of complimentary information, and their joint
visualization can be useful and more convenient for human user than a set of individual images. To solve the image
fusion problem we propose a novel algorithm that utilizes some peculiarities of human color perception and based on the
grey-scale structural visualization. Benefits of presented algorithm are exemplified by satellite imagery.
Key words:
image fusion, structural visualization, human color perception
DOI: 10.7868/S0235009218010031
Cite:
Sidorchuk D. S., Volkov V. V.
Kompleksirovanie radiolokatsionnykh izobrazhenii i opticheskikh snimkov v vidimom i teplovom diapazonakh s uchetom razlichii v vospriyatii yarkosti i tsvetnosti
[Fusion of radar, visible and thermal imagery with account for differences in brightness and chromaticity perception].
Sensornye sistemy [Sensory systems].
2018.
V. 32(1).
P. 14-18 (in Russian). doi: 10.7868/S0235009218010031
References:
- Sidorchuk D.S., Konovalenko I.A., Gladilin S.A., Maximov Y.I. Otsenka shumnosti kanalov v zadache vizualizatsii mul’tispektral’nykh izobrazhenii [Noise estimation for multispectral visualization]. Sensornye sistemy [Sensory systems]. 2016. V. 30(4). P. 344–350 (in Russian).
- Amitrano D., Cecinati F., Di Martino G. An end-useroriented framework for RGB representation of multitemporal SAR images and visual data mining. Proc. of SPIE Vol. 10004, id. 100040Y7 p. 2016. V. 4. DOI: 10.1117/12.2241257.
- Di Zenzo S. A note on the gradient of a multi-image. Comp. Vis., Graphics and Image Proc. 1986. V. 33 (1). P. 116–125.
- Errico A., Angelino C.V., Cicala L. Detection of environmental hazards through the feature-based fusion of optical and SAR data: a case study in southern Italy. Int. J. Remote Sens. 2015. V. 36 (13). P. 3345–3367. DOI: 10.1080/01431161.2015.1054960.
- Ferretti A., Monti-Guarnieri A., Prati C. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. Noordwijk. ESA Publications, ESTEC. 2007. 246 p.
- Hanbury A. Constructing cylindrical coordinate colour spaces. Pattern Recognition Letters. 2008. V. 29(4). P. 494–500. DOI: 10.1016/j.patrec.2007.11.002.
- Levkowitz H. Color theory and modeling for computer graphics, visualization, and multimedia applications. Norwell. Kluwer Academic Publishers. 1997. 219 p.
- Liao D., Qian Y., Zhou J., Tang Y.Y. A manifold alignment approach for hyperspectral image visualization with natural color. IEEE Trans. Geosci. Remote Sens. 2016. V. 54 (6). P. 3151–3162. DOI: 10.1109/TGRS.2015.2512659.
- Nikolaev D., Karpenko S. Color-to-grayscale image transformation preserving the gradient structure. In proc. of 20th ECMS. 2006. P. 427–430.
- Piella G. Image fusion for enhanced visualization: A variational approach. Int. J. Comput. Vis. 2009. V. 83 (1). P. 1–11. DOI: 10.1007/s11263–009–0206–4.
- Sidorchuk D., Konovalenko I., Gladilin S., Maximov Y. Noise estimation for color visualization of multispectral images. Proc. SPIE, 2016 Internat. Conf. on Robotics and Machine Vision. 2017. P. 1025307–1025307. DOI: 10.1117/12.2266352.
- Socolinsky D.A., Wolff L.B. Multispectral image visualization through first-order fusion. IEEE Trans. Image Process. 2002. V. 11 (8). P. 923–931.
- Sokolov V., Nikolaev D., Karpenko S., Schaefer G. On contrast-preserving visualisation of multispectral datasets. Adv. Vis. Comp. 2010. P. 173–180.
- Wachtler T., Wehrhahn C. The Craik – O’Brien – Cornsweet Illusion in Colour: Quantitative Characterisation and Comparison with Luminance. Perception. 1997. V. 26(11). P. 1423–1430.
- Wilson T.A., Rogers S.K., Kabrisky M. Perceptual-based image fusion for hyperspectral data. IEEE Trans. Geosci. Remote Sens. 1997. V. 35 (4). P. 1007–1017.