• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Visual localisation of aerial images on vector map using colour-texture segmentation

© 2018 L. M. Teplyakov, I. A. Kunina, A. P. Gladkov

Institute for Information Transmission Problems RAS 127051 Moscow, Bolshoy Karetny per., 19

Received 21 Aug 2017

In this work we investigate the problem of matching images, captured by UAV, with the map of riparian territories with no use of sattelite navigation. The basis of our method is representation of the image by colourtexture segmentation as a bunch of segments. Then we are trying to recover a geometric transformation which matches segments and map. This transformation consists of arbitrary translation, but restricted rotation and scale. Calculation of transform parameters is based on RANSAC algorithm, which matches image segments with contours on map. For conducting this matching we use local shape descriptors, invariant to rotation and scaling.

Key words: aerial images, geolocalisation, colour segmentation, texture segmentation, contours matching, RANSAC

DOI: 10.7868/S0235009218010055

Cite: Teplyakov L. M., Kunina I. A., Gladkov A. P. Vizualnaya lokalizatsiya aerofotosnimkov na vektornoi karte s ispolzovaniem tsvetoteksturnoi segmentatsii [Visual localisation of aerial images on vector map using colour-texture segmentation]. Sensornye sistemy [Sensory systems]. 2018. V. 32(1). P. 26-34 (in Russian). doi: 10.7868/S0235009218010055

References:

  • Khanipov Т.М., Nikolaev D.P. Issledovanie metoda slijanija oblastej v zadache cvetovoj segmentacii [Investigation of the regions fusion method in the problem of color segmentation]. Proceedings of the conference Information Technologies and Systems ITaS. 2010. Р. 151–155. [in Russian]).
  • Khanipov Т.М., Nikolaev D.P. Issledovanie metoda slijanija oblastej v zadache cvetovoj segmentacii [Investigation of the regions fusion method in the problem of color segmentation]. Proceedings of the conference Information Technologies and Systems ITaS. 2010. Р. 151–155. [in Russian]).
  • Felzenszwalb P.F., Huttenlocher D.P. Efficient graph-based image segmentation. International journal of computer vision. 2004. V. 59. № 2. P. 167–181.
  • Forssén P.E. Maximally stable colour regions for recognition and matching. Computer Vision and Pattern Recognition. 2007. P. 1–8.
  • Friedman J., Hastie T., Tibshirani R. Additive logistic regression a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics. 2000. V. 28. № 2. P. 337–407.
  • Konovalenko I., Miller A., Miller B., Nikolaev D. UAV navigation on the basis of the feature points detection on underlying surface. ECMS. 2015. P. 499–505.
  • Kraus K. Photogrammetry: geometry from images and laser scans. Walter de Gruyter. 2007.
  • Kunina I.A., Terekhin A.P., Khanipov T.M., Kuznetsova E.G., Nikolaev D.P. Aerial image geolocalization by matching its line structure with route map. In Ninth International Conference on Machine Vision, International Society for Optics and Photonics. 2017. V. 103412A. P. 1–7.
  • Lindsten F., Callmer J., Ohlsson H., Törnqvist D., Schön T.B., Gustafsson F. Geo-referencing for uav navigation using environmental classification. Robotics and Automation (ICRA), 2010 IEEE International Conference on. 2010. P. 1420–1425.
  • Luis-Garca R., Deriche R., Alberola-López C. Texture and color segmentation based on the combined use of the structure tensor and the image components. Signal Processing. 2008. V. 88. № 4. P. 776–795.
  • Máttyus G., Fraundorfer F. Aerial image sequence geolocalization with road traffic as invariant feature. Image and Vision Computing. 2016. V. 52. P. 218–229.
  • McMaster R.B. The integration of simplification and smoothing algorithms in line generalization. Cartographica: The International Journal for Geographic Information and Geovisualization. 1989. V. 26. № 1. P. 101–121.
  • Rousson M., Brox T., Deriche R. Active unsupervised texture segmentation on a diffusion based feature space. Computer vision and pattern recognition. Proc. IEEE computer society conference on. 2003. V. 2. P. 699.
  • Senlet T., El-Gaaly T., Elgammal A. Hierarchical semantic hashing: Visual localization from buildings on maps. Pattern Recognition (ICPR), 22nd International Conference on. IEEE. 2014. P. 2990–2995.
  • Viola P., Jones M. Robust real-time face detection. International journal of computer vision. 2004. V. 57. № 2. P. 137–154.
  • Wolfson H., Rigoutsos I. Geometric hashing: An overview. IEEE computational science and engineering. 1997. V. 4. № 4. P. 10–21.
  • Yang J., Wang H., Yuan J., Li Y., Liu J. Invariant multi-scale descriptor for shape representation, matching and retrieval. Computer Vision and Image Understanding. 2016. V. 145. P. 43–58.