• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Algebraic methods for tomography problem

© 2018 A. V. Vatscuk, A. S. Ingacheva, M. V. Chukalina

Moscow Institute of Physics and Technology (MIPT) 141701 Dolgoprudnyy, Institutskiy per., 9
National Research University Higher School of Economics 101000 Moscow, Myasnitskaya ul., 20
Shubnikov Institute of Crystallography of Federal Scientific Research 119333 Moscow, Leninsky Ave, 59
Institute of Microelectronics Technology and High Purity Materials RAS142432 Chernogolovka, Institutskaya ul., 6

Received 17 Oct 2017

The method of computer tomography allows reconstructing the 3D internal structure of an object without physical destruction. The object is probed by X-ray radiation, the measure equipment collects the radiation weak as it passes through the object, and the solution of the inverse problem allows us to reconstruct the spatial distribution of the linear attenuation coefficient. The distribution is associated with the description of the studied object structure. However, the distribution of the attenuation coefficient indicates little about the chemical composition of the object under study. The reason is that the linear attenuation coefficient is a linear composition of the element contributions, whose absorption and fluorescence spectra are resolved in the x-ray range. If the measure set-up is supplemented with energy-sensitive equipment measuring the fluorescent radiation generated by the sample, we get a new technique – X-ray fluorescence tomography. It promises to estimate the local elemental composition. In this paper we first present an overview of known approximations of the problem and compare the algebraic approach with other methods. We analyze three types of measurement set-ups: scanning with a focused probe, a scheme using a confocal collimator in front of the detector window, a measuring scheme using a pinhole between the object and the detector. Reconstruction error calculation is discussed.

Key words: tomography, algebraic reconstruction techniques, approximation

DOI: 10.7868/S0235009218010122

Cite: Vatscuk A. V., Ingacheva A. S., Chukalina M. V. Algebraicheskie metody rekonstruktsii v zadachakh tomografii [Algebraic methods for tomography problem]. Sensornye sistemy [Sensory systems]. 2018. V. 32(1). P. 83-91 (in Russian). doi: 10.7868/S0235009218010122

References:

  • Zaitsev S.I., Chukalina M.V., Mastrippolito R. Rentgenofluorescentnaya lokal'naya diagnostika s ispol'zovaniem konfokal'nogo kollimatora dlya sbora signala [X-ray fluorescence diagnostics wit confocal collimator usage to collect the signal]. Materialy Soveshchaniya po rentgenovskoj optike [Proceedings of X-ray optics]. March 18–23. Nizhnii Novgorod, IPM RAS. 2002. P. 293–298 (in Russian).
  • Andersen A., Kak A. Simultaneous algebraic reconstruction technique (SART): A superier implemetation of the ART algorithm. Ultrason. Imaging. 1984. V 6. P. 81–94. DOI:10.1177/016173468400600107.
  • Boisseau P., Grodzins L. Fluorescence tomography using synchrotron radiation at the NSLS. Hyperfine Interactions. 1987. V. 33. P. 283–292. DOI:10.1007/BF02394116.
  • Bruyndonckx P., Sasov A., Liu X., Van Geert J. Progress in development of a laboratory microXRF-microCT system. Proceedings SPIE Optical Engineering + Applications. De-velopments in X-Ray Tomography VII. San Diego, California, United States, 2010. V. 7804. P. 780419. DOI:10.1117/12.860384.
  • Cesareo R., Mascarenhas S. A new tomographic device based on the detection of fluores-cent x-rays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1989. V. 277. P. 667–672.
  • Geyer L., Schoepf J., Meinel F., Bastarrika G., Leipsic J., Paul N., Rengo M., Laghi A., De Cecco C. State of the Art: Iterative CT Reconstruction Techniques. Radiology.2015. V. 276 (2). P. 339–357. DOI: 10.1148/radiol. 2015132766.
  • Chukalina M., Nikolaev D., Sokolov V., Ingacheva A., Buzmakov A., Prun V. CT metal artifact reduction by soft inequality constraints. Proc. SPIE9875, Eighth International Conference on Machine Vision (ICMV 2015). 2015. P. 98751C. DOI:10.1117/12.2228810.
  • Gordon R., Bender R., Herman G. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor Biol. 1970. V. 29. P. 471–481.
  • Kak A., Slaney M. Principles of computerized tomographic imaging. New York. IEEE Press, 1988. 330 p.
  • Karcaaltıncaba M., Aktas A. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagnostic and Interventional. 2011. V. 11. P. 181–194. DOI:10.4261/1305-3825.DIR.3860-10.0.
  • Kaczmarz S. Angenäherte Auflösung von Systemen Linearer Gleichungen. Bulletin International De l’Academie Polonaise Des Sciences Et Des Lettres A. 1937. P. 335–357.
  • Miqueles E.X., De Pierro A. R. Exact analytic reconstruction in x-ray fluorescence CT and approximated versions. Physics in Medicine and Biology. 2010. V. 55 (4). P. 1007–1024.
  • Nocedal J., Wright S. J. Numerical Optimization. New York. Springer. 1999. P. 634.
  • Prun V., Buzmakov A., Nikolaev D., Chikalina M., Asadchikov V. A computatially efficient version of the algebraic method for computer tomography. Automation and Remote control. 2013. V. 74 (10). P. 1670–1678.
  • Shabel’nikova Ya.L., Chukalina M. V. Comparative Study of Xray Fluorescence Signal Collection by Collimators of Two Types. Technical Physics Letters. 2012. V. 38 (5). P. 452–455. DOI: 10.1134/S1063785012050288.
  • Vincze L., Vekemans B., Brenker F., Falkenberg G., Rickers K., Somogyi A., Kersten M., Adams F. Three-Dimensional Trace Element Analysis by Confocal X-ray Microfluorescence Imaging. Analitical Chemistry. 2004. V. 76. P. 6786–6791. DOI:10.1021/ac049274l.