• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Psychoacoustic and electrophysiological parameters in patients after cochlear implantation

© 2020 A. B. Kushnir, V. V. Bakhshinyan, V. V. Zherenkova, T. I. Chugunova, G. A. Tavartkiladze

National Research Centre for Audiology and Hearing Rehabilitation 117513 Moscow, Leninskiy pr., 123, Russia
Russian Medical Academy Continuous Professional Education 125993 Moscow, Barrikadnaya str., 2/1, b.1, Russia

Received 06 Sep 2019

To assess the results of rehabilitation of patients after cochlear implantation (CI) the following examinations were performed: free field speech audiometry in noise using the Russian-language version of the international phrasal test RUMatrix; spectral temporally modulated ripple test (SMRT); registration spread of electrical excitation (SOE). The research was conducted on 15 normally hearing native Russian speaking participants together with 20 cochlear implanted patients. The study shows that there is a correlation between speech intelligibility in noise and spectral hearing resolution. Therefore, SMRT could be recommended for the assessment of CI patients’ rehabilitation regardless of their level of speech development.

Key words: cochlear implantation, free field speech audiometry, spectral hearing resolution, RUMatrix test, SMRT, spread of electrical excitation (SOE)

DOI: 10.31857/S0235009220020031

Cite: Kushnir A. B., Bakhshinyan V. V., Zherenkova V. V., Chugunova T. I., Tavartkiladze G. A. Psikhoakusticheskie i elektrofiziologicheskie pokazateli u patsientov posle kokhlearnoi implantatsii [Psychoacoustic and electrophysiological parameters in patients after cochlear implantation]. Sensornye sistemy [Sensory systems]. 2020. V. 34(2). P. 107–116 (in Russian). doi: 10.31857/S0235009220020031

References:

  • Boboshko M.Yu. Rechevaya audiometriya. Uchebnoe posobie.[Speech audiometry. Tutorial]. SPb: Izd-vo SPbGMU, 2012. 63 p. (in Russian).
  • Goykhburg M.V., Bakhshinyan V.V., Petrova I.P., Warzybok A., Kollmeier B., Tavartkiladze G.A. Russkoyazychnaya versiya matriksnogo frazovogo testa RUMatrix v svobodnom zvukovom pole u pacientov posle kohlearnoj implantacii. [The Russian-language version of the matrix test (RUMatrix) in free field in patients after cochlear implantation in the long term]. Vestn Otorinolaringol. 2016. V. 81 (6). P. 42–46. https://doi.org/10.17116/otorino201681642-46 (in Russian).
  • Nechaev D.I., Sysueva E.V. Chastotnaya izbiratel’nost' sluha. [Frequency selectivity of hearing]. Sensornye Systemy [Sensory Systems]. 2015. V. 29 (3). P. 181–200 (in Russian).
  • Tavartkiladze G.A. Rukovodstvo po klinicheskoj audiologii. [Handbook on clinical Audiology]. M.: Meditsina; 2013. 676 p. (in Russian).
  • Anderson E.S., Nelson D.A., Kreft H., Nelson P.B., Oxenham A.J. Comparing spatial tuning curves, spectral ripple discrimination, and speech perception in cochlear implant users. J. Acoust. Soc. Am. 2011. V. 130 (1). P. 364–375. https://doi.org/10.1121/1.3589255
  • Anderson E.S., Oxenham A.J., Nelson P.B., Nelson D.A. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlearimplant users. J. Acoust. Soc. Am. 2012. V. 132 (6). P. 3925–3934. https://doi.org/10.1121/1.4763999
  • Aronoff J.M., Landsberger D.M. The development of a modified spectral ripple test. J. Acoust. Soc. Am. 2013. V. 134 (2). EL217–EL222. https://doi.org/10.1121/1.4813802
  • Arnoldner C., Riss D., Brunner M., et al. Speech and music perception with the new fine structure speech coding strategy: Preliminary results. Acta. Otolaryngol. 2007. V. 127. P. 1298–1303. https://doi.org/10.1080/00016480701275261
  • Bierer J.A., Litvak L. Reducing channel interaction through cochlear implant programming may improve speech perception: Current focusing and channel deactivation. Trends. Hear. 2016. V. 17. P. 20. https://doi.org/10.1177/2331216516653389
  • Bilger R.C., Black F.O. Auditory prostheses in perspective. Ann. Otol. Rhinol. Laryngol. Suppl. 1977. V. 86. Pt 2. P. 3–10.
  • Buechner A., Brendel M., Krüeger B., et al. Current steering and results from novel speech coding strategies. Otol. Neurotol. 2008. V. 29 (2). P. 203–207. https://doi.org/10.1097/mao.0b013e318163746
  • Dorman M.F., Gifford R.H. Combining acoustic and electric stimulation in the service of speech recognition. Int. J. Audiol. 2010. V. 49 (12). P. 912-9. https://doi.org/10.3109/14992027.2010.509113
  • Drennan W.R., Won J.H., Timme A.O., Rubinstein J.T. Nonlinguistic outcome measures in adult cochlear implant users over the first year of implantation. Ear. Hearing. 2016. V. 37 (3). P. 354–364. https://doi.org/10.1097/AUD.00000000000
  • Eisenberg L.S., Shannon R.V., Martinez A.S. Speech recognition with reduced spectral cues as a function of age. J. Acoust. Soc. Am. 2000. V. 107 (5 Pt 1). P. 2704–2710.
  • Gifford R.H., Hedley-Williams A., Spahr A.J. Clinical assessment of spectral modulation detection for adult cochlear implant recipients: A non-language based measure of performance outcomes. Int. J. Audiol. 2014. V. 53 (3). P. 159–164. https://doi.org/10.3109/14992027.2013.851800
  • Landsberger D.M., Padilla M., Srinivasan A.G. Reducing current spread using current focusing in cochlear implant users. Hear. Res. 2012. V. 284 (1–2). P.16–24. https://doi.org/10.1016/j.heares.2011.12.009
  • Landsberger D.M., Padilla M., Martinez A.S., Eisenberg L.S. Spectral-temporal modulated ripple discrimination by children with cochlear implants. Ear. Hear. 2018. V. 39(1). P. 60–68. https://doi.org/10.1097/AUD.0000000000000463
  • McDermott H.J., McKay C.M., Vandali A.E. A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant. J. Acoust. Soc. Am. 1992. V. 91. P. 3367–3371.
  • McKay C.M., McDermott H.J., Vandali A.E. A comparison of speech perception of cochlear implantees using the spectral maxima sound processor (SMSP) and the MSP (MULTIPEAK) processor. Acta. Otolaryngol. 1992. V. 112. P. 752–761.
  • Nogueira W., Büchner A., Lenarz T. A psychoacoustic “NofM”-type speech coding strategy for cochlear implants. EURASIP. J. Adv. Signal. Process. 2005. P. 1–16.
  • Saoji A.A., Litvak L., Spahr A.J., Eddins D.A. Spectral modulation detection and vowel and consonant identifications in cochlear implant listeners. J. Acoust. Soc. Am. 2009. V. 126 (3). P. 955–958. https://doi.org/10.1121/1.3179670
  • Srinivasan A.G., Padilla M., Shannon R.V. Improving speech perception in noise with current focusing in cochlear implant users. Hear. Res. 2013. V. 299. P. 29–36. https://doi.org/10.1016/j.heares.2013.02.004
  • Turner C.W., Gantz B.J., Karsten S. Impact of hair cell preservation in cochlear implantation: Combined electric and acoustic hearing. Otol. Neurotol. 2010. V. 31. P. 1227–1232. https://doi.org/10.1097/MAO.0b013e3181f24005
  • Vermeire K., Anderson I., Flynn M. The influence of different speech processor and hearing aid settings on speech perception outcomes in electric acoustic stimulation patients. Ear. Hear. 2008. V. 29. P. 76–86.
  • Warzybok A, Zokoll M., Wardenga N., Ozimek E., Boboshko M., Kollmeier B. Development of the Russian matrix sentence test. Int. J. Audiol. 2015. V. 52 (S2). P. 35–43. https://doi.org/10.3109/14992027.2015.1020969
  • Williges B., Dietz M., Hohmann V., Jurgens T. Spatial release from masking in simulated cochlear implant users with and without access to low-frequency acoustic hearing. Trends. Hear. 2015. V.19. P. 1–14. https://doi.org/10.1177/2331216515616940
  • Wilson B.S., Finley C.C., Lawson D.T. Better speech recognition with cochlear implants. Nature. 1991. V. 352. P. 236–238. https://doi.org/10.1038/352236a0
  • Won J.H., Drennan W.R., Rubinstein J.T. Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users. J. Assoc. Res. Otolaryngol. 2007. V. 8 (3). P. 384–392. https://doi.org/10.1007/s10162-007-0085-8
  • Won J.H., Clinard C.G., Kwon S., Dasika V.K., Nie K., Drennan W.R., Tremblay K.L., Rubinstein J.T. Relationship between behavioral and physiological spectralripple discrimination. J. Assoc. Res. Otolaryngol. 2011. V. 12 (3). P. 375–393. https://doi.org/10.1007/s10162-011-0257-4