• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

CT-images correction method for binarization quality improvement

© 2020 V. V. Kokhan, M. V. Grigoriev, A. V. Buzmakov, V. I. Uvarov, A. S. Ingacheva, M. V. Chukalina

Institute for Information Transmission Problems (Kharhevich Institute) Russian Academy of Sciences, 127051 Moscow, Bolshoy Karetny lane 19, build. 1, Russia
Smart Engines Service LLC, 117312 Moscow, 60-letiya Oktyabrya avenue 9, Russia
Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, 142432 Chernogolovka, Akademika Osipyana Street 6, Russia
FSRC “Crystallography and Photonics” Russian Academy of Sciences, 119333 Moscow, Leninsky avenue 59, Russia
Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences, 142432 Chernogolovka, Akademika Osipyana Street 8, Russia

Received 09 Oct 2019

The properties and applications of products made of porous structures depend on their morphology. Parameters such as porosity, specific surface area of pores and others are traditionally used to descript them. The parameters can be estimated using traditional hardware methods or using the results of computed tomography of the porous structure. The image reconstructed by the tomographic method is presented in grayscale. To calculate the parameters of the studied porous structure, the image must be binarized. Due to the wide range of the reconstructed image voxels intensity and the presence of noise, the binarization process is not a trivial procedure. To reduce noise, the reconstructed images are filtered before the binarization. Papers by other authors contain references to the use of filters of various types when working with tomographic images of porous structures, but there is no justification for choosing a filter type. In this paper, we propose an approach to choose the optimal type of filter, which is based on two estimates: image distortion evaluation after the filtration step and the number of “levitating stones” (objects that do not connect to the surrounding material) in the pores after the binarization step. An algorithm is developed for processing cases of “levitating stones” remaining in the image. A new method for correcting images of porous structures contains threestages: optimal filtering of the reconstructed image, threshold binarization, processing of cases with remaining stones.

Key words: Porous structure, segmentation, filters, computed tomography

DOI: 10.31857/S0235009220020067

Cite: Kokhan V. V., Grigoriev M. V., Buzmakov A. V., Uvarov V. I., Ingacheva A. S., Chukalina M. V. Metod korrektsii kt-izobrazhenii poristykh struktur dlya povysheniya kachestva binarizatsii [Ct-images correction method for binarization quality improvement]. Sensornye sistemy [Sensory systems]. 2020. V. 34(2). P. 147–155 (in Russian). doi: 10.31857/S0235009220020067

References:

  • Ershov E.I. Algoritm bystroi binarnoi lineinoi klasterizatsii malomernykh gistogramm [Fast binary linear clustering algorithm for small dimensional histograms]. Sensornye sistemy [Sensory systems]. 2017. V. 31 (3). P. 261–269 (in Russian).
  • Serezhnikova T.I. Ustojchivye metody vosstanovleniya zashumlennyh izobrazhenij [Stable methods for reconstruction of noisy images]. Vestnik YUzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Matematicheskoe modelirovanie i programmirovanie [Bulletin of the South Ural State University, Series “Mathematical Modelling, Programming & Computer Software”]. 2011. V. 25. P. 32–42 (in Russian).
  • Boas F.E., Fleischmann D. CT artifacts: causes and reduction techniques. Imaging in Medicine. 2012. V. 4.2. P. 229–240.
  • Cai X., Malcolm A.A., Wong B.S., Fan Z. Measurement and characterization of porosity in aluminium selective laser melting parts using X-ray CT. Virtual and Physical Prototyping. 2015. V 10. № 4. P. 195–206.
  • Chaki S., Routray A., Mohanty W. A diffusion filter based scheme to denoise seismic attributes and improve predicted porosity volume. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2017. V. 10.12. P. 5265–5274.
  • Chukalina M., Ingacheva A. Polychromatic CT data improvement with one-parameter power correction. Mathematical Problems in Engineering. 2019. Article ID 1405365(2019).
  • Chukalina M.V., Ingacheva A.S., Buzmakov A.V., Krivonosov Y.S., Asadchikov V.E., Nikolaev D.P. A Hardware and Software System for Tomographic Research: Reconstruction via Regularization. Bulletin of the Russian Academy of Sciences: Physics. 2019. V. 83. № 2. P. 150–154.
  • Chukalina M., Nikolaev D., Ingacheva A., Buzmakov A., Yakimchuk I., Asadchikov V. To image analysis in computed tomography. Ninth International Conference on Machine Vision. 2017. V. 10341. P. 103411B.
  • Demirkaya O. Reduction of noise and image artifacts in computed tomography by nonlinear filtration of projection images. Medical Imaging : Image Processing. 2001. V. 4322.
  • He K., Sun J.,Tang X. Guided image filtering. European conference on computer vision. 2010. P. 1–14.
  • Kulkarni R., Tuller M., Fink W., Wildenschild D. Three-dimensional multiphase segmentation of X-ray CT data of porous materials using a Bayesian Markov random field framework. Vadose Zone Journal. 2012. V. 11. N 1. P. 1539–1663.
  • Kurita T., Otsu N., Abdelmalek N. Maximum likelihood thresholding based on population mixture models. Pattern recognition. 1992. V. 25.10. P. 1231–1240.
  • Manduca A., Yu L., Trzasko J.D., Khaylova N., Kofler J.M., McCollough C.M., Fletcher J.G. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Medical physics. 2009. V. 36.11. P. 4911–4919.
  • Müter D., Pedersen S., Sørensen H.O., Feidenhans R., Stipp S.L.S. Improved segmentation of X-ray tomography data from porous rocks using a dual filtering approach. Computers & geosciences. 2012. V. 49. P. 131–139.
  • Nadernejad E., Hassanpour H., Salarian M. Improving quality of fractal compressed images. International Conference on Machine Vision. 2007. P. 56–61.
  • Nickerson S., Shu Yu., Zhong D., Conke K., Tandia A. Permeability of porous ceramics by X-ray CT image analysis. Acta Materialia. 2019. V. 172. P. 121–130.
  • Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence. 1990. V. 12.7. P. 629–639.
  • Primak A.N., McCollough C.H., Bruesewitz M.R., Zhang J., Fletcher J.G. Relationship between noise, dose, and pitch in cardiac multi–detector row CT. Radiographics. 2006. V. 26.6. P. 1785–1794.
  • Queisser S., Wittmann M., Bading H., Wittum G. Filtering, reconstruction, and measurement of the geometry of nuclei from hippocampal neurons based on confocal microscopy data. Journal of Biomedical Optics. 2008. V. 13.1. P. 014009.
  • Sheppard A.P., Sok R., and Averdunk H. Techniques for image enhancement and segmentation of tomographic images of porous materials. Physica A: Statistical mechanics and its applications. 2004. V. 339. № 1–2. P. 145–151.
  • Tomasi C., Manduchi R. Bilateral filtering for gray and color images. Iccv. 1998. V. 98. № 1.
  • Tuller M., Kulkarni R., Fink W. Segmentation of X-ray CT data of porous materials: A review of global and locally adaptive algorithms. Soil–Water–Root Processes: Advances in Tomography and Imaging soilwaterrootpr. 2013. P. 157–182.
  • Ushizima D., Morozov D., Weber G.H., Bianchi A.G., Sethian J.A., Bethel E.W. Augmented topological descriptors of pore networks for material science. IEEE transactions on visualization and computer graphics. 2012. V. 18.12. P. 2041–2050.
  • Van De Walle W., Janssen H. Validation of a 3D pore scale prediction model for the thermal conductivity of porous building materials. Energy Procedia. 2017. V. 132. P. 225–230.
  • Van Eyndhoven G., Kurttepeli M., Van Oers C.J., Cool P., Bals S., Batenburg K.J., Sijbers J. Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials. Ultramicroscopy. 2004. V. 148. P. 10–19.
  • Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing. 2004. V. 13 (4). P. 600–612.
  • Witten I.H., Frank E., Hall M.A., Pal C.J. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann. 2016.
  • Wu Y.S., van Vliet L.J., Frijlink H.W., Stokroos I., van der Voort Maarschalk K. Pore direction in relation to anisotropy of mechanical strength in a cubic starch compact. AAPS PharmSciTech. 2008. V. 9. № 2. P. 528–535.
  • Zambrano M., Tondi E., Mancini L., Arzilli F., Lanzafame G., Materazzi M., Torrieri S. 3D Pore-network quantitative analysis in deformed carbonate grainstones. Marine and Petroleum Geology. 2017. V. 82. P. 251–264.
  • Zhao J., Luo S., He S. Research of pore structure with large area using improved octree algorithm. Fifth International Conference on Machine Vision (ICMV 2012): Algorithms, Pattern Recognition, and Basic Technologies. 2013. V. 8784. P. 87841A.