• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Gender differences in perfomance of mental recall of tthe route on a city map. Analysis of the eye movements character

© 2019 A. B. Kushnir, N. Yu. Gerasimenko, E. S. Mikhailova

Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Moscow, Butlerova str., 5A, Russia

Received 07 May 2019

"In eye tracking experiment gender differences of mental recall of the route on a city map were analyzed. The gender differences of the eye movement characteristics during recall as well as the differences between learning and recall were found in the maps’ areas near the route. The complete fixation time, the number of fixations and the mean fixation duration were higher in males compared to females. In males during recalling the number of fixations decreased, the mean fixation duration increased, and the complete fixation time has not changed. In contrast, females revealed a significant fixation number decrease, a slight mean fixation duration increase that resulted in a marked complete fixation time decrease. So, males compared to females devote more time to the areas near the route that may be considered as an index of more accurate recall of the route. The dynamics of mean fixation duration did not show a dependence on the gender: on both groups the fixation duration increase during recall in normal orientation maps and decrease in maps rotated on 90 degrees. According to findings received, males better than females recall the topographic characteristics of the spatial environment that might be the basis of more successful navigation behavior."

Key words: gender, navigation, visuospatial attention, spatial memory, eye movement behavior

DOI: 10.1134/S0235009219040048

Cite: Kushnir A. B., Gerasimenko N. Yu., Mikhailova E. S. Polovye razlichiya vypolneniya zadachi myslennogo vosproizvedeniya marshruta na karte gorodskoi mestnosti. analiz dvizhenii glaz [Gender differences in perfomance of mental recall of tthe route on a city map. analysis of the eye movements character]. Sensornye sistemy [Sensory systems]. 2019. V. 33(4). P. 331-342 (in Russian). doi: 10.1134/S0235009219040048

References:

  • Barabanshhikov V.А. Okulomotornaya aktivnost' cheloveka kak predmet i metod psikhologicheskogo issledovaniya [Human oculomotor activity as a subject and method of psychological research]. Аjtreking v psikhologicheskoj nauke i praktike [Eyetracking in psychological science and practice]. Ed. Barabanshhikov V.А. M.: Cogito-Centre, 2015 P. 15–35 (in Russian).
  • Kiseleva А.B., Gerasimenko N.YU., Mikhajlova E.S. Polovye razlichiya vypolneniya testa “Kompleksnaya figura Tejlora”. Аnaliz rezul’tatov nejropsikhologicheskogo issledovaniya i registratsii glazodvigatel’nykh reaktsij. [Gender differences in performance of the Taylor Complex Figure Test: A neuropsychological and eye tracking study] Rossijskij zhurnal kognitivnoj nauki [The Russian Journal of Cognitive Science]. 2017 V. 4 (2–3). P. 13–26 (in Russian).
  • Andersen N.E., Dahmani L., Konishi K., Bohbot V.D. Eye tracking, strategies, and sex differences in virtual navigation. Neurobiol Learn Mem. 2012 V. 97 (1). P. 81–89. doi:10.1016/j.nlm.2011.09.007
  • Barkley C.L., Gabriel K.I. Sex differences in cue perception in a visual scene: Investigation of cue type. Behav Neurosci. 2007 V. 121 (2). P. 291–300. DOI:10.1037/0735–7044.121.2.291
  • Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B (Methodological). 1995 V. 57 (1). P. 289–300.
  • Bocchi A., Giancola M., Piccardi L., Palmiero M., Nori R., D’Amico S. How would you describe a familiar route or put in order the landmarks along it? It depends on your cognitive style! Exp Brain Res. 2018 V. 236 (12). P. 3121–3129. DOI:10.1007/s00221–018–5367–3
  • Boccia M., Piccardi L., Di Marco M., Pizzamiglio L., Guariglia C. Does field independence predict visuospatial abilities underpinning human navigation? Behavioural evidence. Exp Brain Res. 2016 V. 234 (10). P. 2799–2807. DOI:10.1007/s00221–016–4682–9
  • Boone A.P., Gong X., Hegarty M. Sex differences in navigation strategy and efficiency. Mem Cognit. 2018 V. 46 (6). P. 909–922. DOI:10.3758/s13421-018-0811-y
  • Brouwer A.M., Reuderink B., Vincent J., van Gerven M.A.J., van Erp J.B.F. Distinguishing between target and nontarget fixations in a visual search task using fixation–related potentials. J Vis. 2013 V. 13 (3). P. 1–10. DOI: 10.1167/13.3.17
  • Brouwer A.M., Hogervorst M.A., Oudejans B., Ries A.J., Touryan J. EEG and eye tracking signatures of target encoding during structured visual search. Front Hum Neurosci. 2017 V. 11 (264). DOI: 10.3389/fnhum.2017.00264
  • Cazzato V., Basso D., Cutini S., Bisiacchi P. Gender differences in visuospatial planning: An eye movements study. Behav Brain Res. 2010 V. 206 (2). P. 177–183. DOI: 10.1016/j.bbr.2009.09.010.
  • Collins D. W., Kimura D. A large sex difference on a twodimensional mental rotation task. Behav Neurosci. 1997 V. 111 (4). P. 845–849. DOI: 10.1037//0735–7044.111.4.845
  • Dabbs J.M.J., Chang E.–L., Strong R.A., Milun R. Spatial ability, navigation strategy, and geographic knowledge among men and women. Evol Hum Behav. 1998 V. 19 (2). P. 89–98. DOI:10.1016/s1090-5138(97)00107-4
  • Galea L.A.M., Kimura D. Sex differences in route–learning. Personal Individ Differ. 1993 V. 14 P. 53–65.
  • Gärling T., Böök A., Lindeberg E. Spatial orientation and way–finding in the designed environment: a conceptual analysis and some suggestions for post occupancy evaluation. J Archit Plann Res. 1986 V. 3 P. 55–64.
  • Gootjes L., Bruggeling E.C., Magnee T., van Strien J.W. Sex differences in the latency of the late event–related potential mental rotation effect. Neuroreport. 2008 V. 19 (3). P. 349–353. DOI:10.1097/wnr.0b013e3282f519b3
  • Iachini T., Sergi I., Ruggiero G., Gnisci A. Gender differences in object location memory in a real three–dimensional environment. Brain Cogn. 2005 V. 59 (1). P. 52–59. DOI: 10.1016/j.bandc.2005.04.004
  • Jangraw D.C., Wang J., Lance B.J., Chang S.F., Sajda P. Neurally and ocularly informed graph–based models for searching 3D environments. J Neural Eng. 2014 V. 11 (4). DOI: 10.1088/1741–2560/11/4/046003
  • Killian N.J., Jutras M.J., Buffalo E.A. A map of visual space in the primate entorhinal cortex. Nature. 2012 V. 491 (7426). P. 761–764. DOI: 10.1038/nature11587
  • Lambrey S., Berthoz A. Gender differences in the use of external landmarks versus spatial representations updated by selfmotion. J Integr Neurosci. 2007 V. 6 (3). P. 379–401
  • Levine S.C., Foley A., Lourenco S., Ehrlich S., Ratliff K. Sex differences in spatial cognition: advancing the conversation. Wiley Interdiscip Rev Cogn Sci. 2016 V. 7 (2). P. 127–155. DOI: 10.1002/wcs.1380
  • Levy L.J., Astur R.S., Frick K.M. Men and women differ in object memory but not performance of a virtual radial maze. Behav Neurosci. 2005 V. 119 (4). P. 853–862. DOI: 10.1037/0735-7044.119.4.853
  • MacFadden A., Elias L., Saucier D. Males and females scan maps similarly, but give directions differently. Brain Cogn. 2003 V. 53 (2). P. 297–300.
  • Merrill E.C., Yang Y., Roskos B., Steele S. Sex differences in using spatial and verbal abilities influence route learning performance in a virtual environment: A comparison of 6- to 12-year old boys and girls. Front Psychol. 2016 V. 7 doi:10.3389/fpsyg.2016.00258
  • Mueller S.C., Jackson C.P.T., Skelton R.W. Sex differences in a virtual water maze: An eye tracking and pupillometry study. Behav Brain Res. 2008 V. 193 (2). P. 209–215. DOI: 10.1016/j.bbr.2008.05.017.
  • Nori R., Giusberti F. Predicting cogntive styles from spatial abilities. Am. J. Psychol. 2006 V. 119 (1). P. 67–86. DOI: 10.2307/20445319
  • Nori R., Piccardi L., Maialetti A., Goro M., Rossetti A., Argento O., Guariglia C. No gender differences in egocentric and allocentric environmental transformation after compensating for male advantage by manipulating familiarity. Front Neurosci. 2018 V. 12 DOI: 10.3389/fnins.2018.00204
  • Nori R., Piccardi L., Migliori M., Guidazzoli A., Frasca F., DeLuca D., Giusberti, F. The virtual reality Walking Corsi Test. Comput Human Behav. 2015 V. 48 P. 72–77. DOI: 10.1016/j.chb.2015.01.035
  • Nori R., Piccardi L. Familiarity and spatial cognitive style: how important are they for spatial representation? Spatial Memory: Visuospatial Processes, Cognitive Performance and Developmental Effects. Ed. Thomas J.B. NY. Nova Publisher, 2011 P. 123–144.
  • Pazzaglia F., Moè A. Cognitive styles and mental rotation ability in map learning. Cogn Process. 2013 V. 14 (4). P. 391–399. DOI: 10.1007/s10339–013–0572–2
  • Piccardi L., De Luca M., Nori R., Palermo L., Iachini F., Guariglia C. Navigational style influences eye movement pattern during exploration and learning of an environmental map. Front Behav Neurosci. 2016 V. 10 (140). DOI: 10.3389/fnbeh.2016.00140
  • Postma A., Jager G., Kessels R.P.C., Koppeschaar H.P.F., van Honk J. Sex differences for selective forms of spatial memory. Brain Cogn. 2004 V. 54 (1). P. 24–34. DOI: 10.1016/s0278-2626(03)00238-0
  • Saucier D.M., Green S.M., Leason J., MacFadden A., Bell S., Elias L.J. Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies? Behav Neurosci. 2002 V. 116 (3). P. 403–410. DOI: 10.1037//0735–7044.116.3.403
  • Schiller D., Eichenbaum H., Buffalo E.A., Davachi L., Foster D.J., Leutgeb,S., Ranganath C. Memory and space: towards an understanding of the cognitive map. J. Neurosci. Offi. J. Soc. Neurosci. 2015 V. 35 (41). P. 13904–13911. DOI: 10.1523/JNEUROSCI.2618-15.2015
  • Scheer C., Mattioni Maturana F., Jansen P. Sex differences in a chronometric mental rotation test with cube figures. Neuroreport. 2016 V. 29 (10). P. 870–875. DOI:10.1097/wnr.0000000000001046
  • Silverman I., Choi J., Peters M. The hunter-gatherer theory of sex differences in spatial abilities: Data from 40 countries. Arch Sex Behav. 2007 V. 36 (2). P. 261–268. DOI: 10.1007/s10508-006-9168-6
  • Voyer D., Voyer S., Bryden M.P. Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychol Bull. 1995 V. 117 (2). P. 250–270. DOI: 10.1037//0033-2909.117.2.250
  • Wenzel M.A., Golenia J., Blankertz B. Classification of eye fixation related potentials for variable stimulus saliency. Front Neurosci. 2016 V. 10 (23). DOI: 10.3389/fnins.2016.00023
  • Woolley D.G., Vermaercke B., Op de Beeck H. et al. Sex differences in human virtual water maze performance: Novel measures reveal the relative contribution of directional responding and spatial knowledge. Behav Brain Res. 2010 V. 208 (2). P. 408–414. DOI: 10.1016/j.bbr.2009.12.019
  • Yagi S., Galea L.A.M. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology. 2018 V. 44 (1). P. 200–213. DOI:10.1038/s41386-018-0208-4
  • Yu Q., Tang Y., Li J., Lu Q., Wang H., Sui D., Zhou L., Wang Y., Heil M. Sex differences of event–related potential effects during three–dimensional mental rotation. Neuroreport. 2009 V. 20 (1). P. 43–47. DOI: 10.1097/wnr.0b013e32831c50f4