• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Activity of neurons of the nucleus of the solitary tract to stimulation of hypothalic nuclei in norm and after vibration exposure

© 2019 S. H. Sarkisyan, M. H. Danielyan, V. A. Chavushyan

Yerevan State University, Faculty of Biology, Department of Human and Animal Physiology, Republic of Armenia, Yerevan 0025, 1 Alek Manukyan st., Armenia
L. Orbeli Institute of Physiology of NAS RA. Republic of Armenia, Yerevan 0028, 22 Orbeli bros. str., Armenia

Received 25 Feb 2019

In this paper, we present data of extracellular recording and mathematical analysis of an induced impulse activity of neurons of the nucleus of the solitary tract to high-frequency stimulation of the hypothalamic paraventricular and supraoptic nuclei in rats in norm and under conditions of long-term vibration exposure. It was shown that responses in the form of tetanic potentiation with stable reproducibility in multiple trials dominate in norm. In the group exposed to vibration, a decrease in the number of responsive neurons and a significant increase in the proportion of those exhibiting poststimulus activation were detected. Revealed adaptive redistribution of the balance of excitatory and inhibitory post-stimulus responses may be the result of restructuring of the neurotransmitter systems of the hypothalamic-bulbar projections under conditions of prolonged vibration exposure. Morphological and histochemical results revealed low activity of acid phosphatase and a close interaction of neurons and gliocytes as an integral unit, providing the survival of neurons in conditions of vibration exposure.

Key words: vibration exposure, the nucleus of the solitary tract, single neuronactivity, tetanic stimulation, paraventricular and supraoptic nuclei of the hypothalamus

DOI: 10.1134/S0235009219030090

Cite: Sarkisyan S. H., Danielyan M. H., Chavushyan V. A. Aktivnost neironov yadra solitarnogo trakta pri stimulyatsii gipotalamicheskikh yader v norme i posle vibratsionnogo vozdeistviya [Activity of neurons of the nucleus of the solitary tract to stimulation of hypothalic nuclei in norm and after vibration exposure]. Sensornye sistemy [Sensory systems]. 2019. V. 33(4). P. 343-350 (in Russian). doi: 10.1134/S0235009219030090

References:

  • Al’tova L.S. Eksperimental’no-morfologicheskiye dannyye o vnutristvolovykh svyazyakh bluzhdayushchego nerva [Experimental-morphological data on the intrastem connections of the vagus nerve]. Organizatsiya mezhneyronnykh svyazey [The Organization of Interneuron Connections]. Moscow. 1967 (in Russian).
  • Grin Z.A., Ibragimov I.I., Vaynerovskaya A.I. Funktsional’nyye narusheniya serdechno-sosudistoy sistemy pri vibratsionnoy bolezni [Functional disorders of the cardiovascular system in vibration disease]. Gigiyena truda i profzabolevaniy [Occupational Health and Occupational Diseases ]. 1983 V. 12 (4). P. 26–28 (in Russian).
  • Danielyan M.H., Sarkisyan S.H. Morphological and functional changes in the nucleus of the solitary tract of rats after labyrintectomy in combination with vibration. Vestnik Bashkirskogo gos. med. universiteta (Vestnik BGMU). Ufa. 2017 № 4 P. 60–66 (in Russian).
  • Meliksetyan I.B. The reveling of Ca2+-dependent activity of acid phosphatase in cell structures of rat brain. Morphologia (SPb). 2007 V. 131(2). P. 77–80 (in Russian).
  • Christova M., Rafolt D., Mayr W., Wilf ling B., Gallasch E. Vibration stimulation during non-fatiguing tonic contraction induces outlasting neuroplastic effects. J. Electromyogr. Kinesiol. 2010 V. 20 № 4 P. 627–635. DOI:10.1016/j.jelekin.2010.03.001
  • Cottle M.K., Calaresu F.R. Projections from the nucleus of tractussolitarius in the rat. J. Comp. Neurol. 1975. V. 161 № 1 P. 143–152. DOI:10.1002/cne.901610202
  • Eroglu C., Barres B.A., Stevens B. Glia as active paricipants in the development and function of synapses. In: Hell J., Ehlers M., editors. Structural and Functional Organization of the Synapse. Springer. 2008 P. 683–714. DOI: 10.1007/978-0-387-77232-5_23.
  • Forner-Cordero A., Steyvers M., Levin O., Alaerts K., Swinnen S.P. Changes in corticomotor excitability following prolonged muscle tendon vibration. Behav. Brain Res. 2008 V. 190 № 1 P. 41–49. DOI: 10.1016/j.bbr.2008.02.019
  • Grabauskas G., Bradley R.M. Tetanic stimulation induces short-term potentiation of inhibitory synaptic activity in the rostral nucleus of the solitary tract. J. Neurophysiol. 1998 V. 79 P. 595–604. DOI: 10.1152/jn.1998.79.2.595
  • Hirata M., Sakakibara H. Visually-evoked P300 and NOGO potentials as indicators of central nervous system function in patients with vibration syndrome. Int. Arch. Occup. Environ Health. 2008 V. 82 № 1 P. 79–85. DOI: 10.1007/s00420-008-0309-1
  • Hlavacka F., Krizkova M., Horak F. B. Modification of human postural .response to leg muscle vibration by electrical vestibular stimulation. Neuroscince Letter. 1995 V. 189 № 1 P. 9–18. PMID:7603629
  • Huang E.J., Reichardt L.F. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001 V. 24 P. 677–736. DOI: 10.1146/annurev.neuro.24.1.677
  • Kartapol’tseva N.V., Katamanova E.V. Characteristics of long latent auditory evoked potentials under workers' exposure to occupational local vibration and noise. Med. Tr. Prom. Ekol. 2009. № 1 P. 15–18. PMID:19278186
  • Katmanova E.V., Lakhman O.L, Nurbaeva D.Zh., Kartapol’tseva N.V., Sudakova N.G. Bioelectric brain activity under exposure to vibration. Med. Tr. Prom. Ekol. 2010 № 7 P. 6–9. PMID:20853622
  • Kooy D., Koda L.Y., McGinty J.F., Gerfen Ch.R., Bloom F.E. The organization of projections from the cortes, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. Journal Comparative Neurology. 1984 V. 224 P. 1–24. DOI.org/10.1002/cne.902240102
  • Marconi B., Filippi G.M., Koch G., Pecchioli C., Salerno S., Don R., Camerota F., Saraceni V.M., Caltagirone C. Long-term effects on motor cortical excitability induced by repeated muscle vibration during contraction in healthy subjects. J. Neurol. Sci. 2008 V. 275 № 1–2. P. 51–59. DOI: 10.1016/j.jns.2008.07.025
  • Mileva K.N., Bowtell J.L., Kossev A.R. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men. Exp. Physiol. 2009 V. 94 № 1 P.103–116. DOI: 10.1113/expphysiol.2008.042689
  • Norgren R. Projections from the nucleus of the solitary tract in the rat. Neuroscience. 1978 V. 3 № 2 P. 207–218 PMID:733004
  • Paxinos G.,Watson Ch. The rat brain in stereotaxic coordinates. NewYork: Acad. Press, 2005 376 p.
  • Sciarretta C., Fritzsch B., Beisel K., Rocha-Sanchez S.M., Buniello A., Horn J.M. PLCγ-activated signalling is essential for TrkB mediated sensory neuron structural plasticity. BMC Developmental Biology. 2010 V. 10 № 1 P. 103. DOI: 10.1186/1471-213X-10-103
  • Tang S., Machaalani R., Waters K.А. Immunolocalisation of pro- and mature-brain derived neurotrophic factor (BDNF) and receptor TrkB in the human brainstem and hippocampus. Brain Res. 2010 P. 1–14. DOI: 10.1016/j.brainres.2010.07.051.
  • Tatti R., Haley M.S., Swanson O.K., Tselha T., Maffei A. Neurophysiology and Regulation of the Balance Between Excitation and Inhibition in Neocortical Circuits. Biol Psychiatry. 2017 V. 81 (10). P. 821–831. DOI: 10.1016/j.biopsych.2016.09.017.
  • Verkhratsky A., Toescu E.C. Neuronal-glial networks as substrate for CNS integration. J. Cell. Mol. Med. 2006 V. 10 № 4 P. 826–836. PMID:17125587