• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Subjective image and video quality assessment: methodology review

© 2019 M. A. Grachevaa, V. P. Bozhkovaa, A. A. Kazakovaa,b, G. I. Rozhkovaa

aInstitute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, 127051 Moscow, B. Karetny per. 19, Build. 1, Russia
bPirogov Russian National Research Medical University, 117997 Moscow, Ostrovitianov str. 1, Russia

Received 10 Apr 2019

Usability of different algorithms elaborated for visual information compression, filtering or transformation is usually compared by means of various methods of assessing the quality of the images obtained as a result of processing. There are two types of such methods – objective and subjective. Objective methods are based on strict mathematical criteria independent of people’s opinions. In contrast, subjective methods are based on the people’s opinions collected in special experiments on image quality assessment. In this brief review, some methodological aspects of the subjective methods are considered. Though the assessment of image quality by means of such methods is in high demand at present, there is little proper literature in Russian for the potential users, having no experience in such investigations. The methods succinctly described here are: ACR – absolute category rating, ACR-HR – absolute category rating with hidden reference, SSCQE – single stimulus continuous quality estimation, DCR – degradation category rating, DSCQR – double stimulus continuous quality rating, PC – pair comparison, PSJ – pairwise similarity judgement, SDSCE – simultaneous double stimulus for continuous evaluation. In addition, some general recommendations are presented on planning and conducting of the experiments, implying participation of many people.

Key words: image quality, subjective image quality assessment, human studies, user studies, experimental design

DOI: 10.1134/S0235009219040036

Cite: Gracheva M. A., Bozhkova V. P., Kazakova A. A., Rozhkova G. I. Subektivnaya otsenka kachestva staticheskikh i videoizobrazhenii: metodologicheskii obzor [Subjective image and video quality assessment: methodology review]. Sensornye sistemy [Sensory systems]. 2019. V. 33(4). P. 287-304 (in Russian). doi: 10.1134/S0235009219040036

References:

  • Bozhkova V.P., Basova O.A., Nikolaev D.P. Matematicheskie modeli prostranstvennogo tsvetovospriyatiya [Mathematical models of spatial color perception]. formatsionnye protsessy [Information processes]. 2019 V. 19 № 2 P. 187–199 (in Russian).
  • Bokov A.A., Vatolin D.S. Metodika ob”ektivnoi otsenki kachestva vosstanovleniya fona v video [Objective quality assessment methodology for video background reconstruction]. Tsifrovaya obrabotka signalov [Digital Signal Processing]. 2016 № 3 P. 26–33 (in Russian).
  • Vatolin D.S., Parshin A.E. Metody dlya ob”ektivnoi otsenki kachestva videokodekov po szhatym imi videoposledovatel’nostyam [Methods for an objective assessment of the quality of video codecs using video sequences compressed by them]. Novye informatsionnye tekhnologii v avtomatizirovannykh sistemakh [New information technologies in automated systems]. 2006 № 9 P. 4–12 (in Russian).
  • Domasev M.V., Gnatyuk S. Tsvet, upravlenie tsvetom, tsvetovye raschety i izmereniya [Color, color management, color calculations and measurements]. SPb.: “Piter”, 2007 224 p. (in Russian).
  • Lebedev D.S. Model’ mekhanizma raspoznavaniya orientatsii 3-polosnykh dvukhgradatsionnykh optotipov [A model of orientation recognition mechanisms for the 3-bar two-grade optotypes]. Sensornye sistemy [Sensory systems]. 2015 V. 29 (4). P. 309–320 (in Russian).
  • Maksimov V.V. Transformatsiya tsveta pri izmenenii osveshcheniya [Color transformation during lighting changes]. M.: Nauka, 1984 161 p. (in Russian).
  • Monich Yu.I., Starovoitov V.V. Otsenki kachestva dlya analiza tsifrovykh izobrazhenii [Image Quality Evaluation for Image Analysis]. Iskusstvennyi intellekt [Artificial intelligence]. 2008 (4). P. 376–385 (in Russian).
  • Rozhkova G.I., Matveev S.G. Zrenie detei: problemy otsenki i funktsional’noi korrektsii [Children vision: problems of vision assessment and functional treatment]. M.: Nauka, 2007 315 p. (in Russian).
  • Khiks Ch. Osnovnye printsipy planirovaniya eksperimenta [Basic principles of experiment planning]. M.: MIR, 1967 406 p. (in Russian).
  • Aldridge R.P., Hands D.S., Pearson D.E., Lodge N.K. Continuous quality assessment of digitally coded television pictures. IEE Proceedings of the Vision Image and Signal Processing. 1998 V. 145 (2). P. 116–123. DOI: 10.1049/ip-vis:19981843
  • Alpert T., Evain J-P. Subjective quality evaluation – The SSCQE and DSCQE methodologies. Ebu Tech Rev. 1997 P. 12–20.
  • Anwar S., Li C., Porikli F. Deep underwater image enhancement. arXiv preprint arXiv:1807.03528. 2018 12 p.
  • Bailey R.A. Design of Comparative Experiments. Cambridge University Press. 2008 255 p. DOI: 10.1017/CBO9780511611483
  • Chen Q., Xu J., Koltun V. Fast image processing with fullyconvolutional networks. Proc. IEEE Conference on Computer Vision and Pattern Recognition. 2017 V. 9 P. 2497–2506.
  • Corriveau P., Gojmerac C., Hughes B., Stelmach L. All subjective scales are not created equal: The effects of context on different scales. Signal Processing. 1999 V. 77 (1). P. 1–9. DOI: 10.1016/S0165-1684 (99)00018-3
  • Cunningham D.W., Wallraven C. Experimental design: from user studies to psychophysics. AK Peters/CRC Press. 2011 392 p.
  • van Dijk A.M., Martens J.-B., Watson A.B. Quality assessment of coded images using numerical category scaling. Proc SPIE. 1995 V. 2451 P. 90–101. DOI: 10.1117/12.201231
  • Fairchild M.D., Johnson G.M. The iCAM framework for image appearance, image differences, and image quality. J. Electron. Imaging. 2004 V. 13 P. 126–138.
  • Gulliksen H., Tucker L. A general procedure for obtaining paired comparisons from multiple rank orders. Psychometrika. 1961 V. 26 P. 173–184.
  • Hamberg R., de Ridder H. Continuous assessment of perceptual image quality. Journal of the Optical Society of America. 1995 V. 12 P. 2573–2577. DOI: 10.1364/JOSAA.12.002573
  • Hamberg R., Ridder H. Time-varying Image Quality: Modeling the Relation between Instantaneous and Overall Quality. SMPTE Journal. 1999 P. 802–811. DOI: 10.5594/J04337
  • Hands D.S. A basic multimedia quality model. IEEE Transactions on Multimedia. 2004 V. 6 (6). P. 806–816. DOI: 10.1109/TMM.2004.837233
  • Ijsselsteijn W., de Ridder H., Hamberg R., Bouwhuis D., Freeman J. Perceived depth and the feeling of presence in 3DTV. Displays. 1998 V. 18 P. 207–214. DOI: 10.1016/S0141-9382 (98)00022-5
  • ITU-R Recommendation ITU-R P.910. 1999 Subjective video quality assessment methods for multimedia applications.
  • ITU-R Recommendation ITU-T BT.500-13. 2002 Methodology for the subjective assessment of the quality of television pictures.
  • ITU-R Recommendation ITU-R BT.710-4. 1998 Subjective assessment methods for image quality in high-definition television.
  • ITU-R Report ITU-R BT.1082. 1990 Studies toward the unification of picture assessment methodology.
  • ITU-T Recommendation ITU-T P.800. 1996 Methods for subjective determination of transmission quality.
  • ITU-T Recommendation ITU-T P.930. 1996 Principles of a reference impairment system for video.
  • Kim A., Reynaud R., Hess K., Mullen. A normative data set for the clinical assessment of achromatic and chromatic contrast sensitivity using a qCSF approach. Investigative ophthalmology and visual science. 2017 V. 58 (9). P. 3628–3636. DOI:10.1167/iovs.17-21645
  • Kontsevich L.L., Tyler C.W. Analysis of stereothresholds for stimuli below 2.5 c/deg. Vision Res. 1994 V. 34 (17). P. 2317–2329. DOI: 10.1016/0042-6989 (94)90110-4
  • Kontsevich L.L., Tyler C.W. A simpler structure for local spatial channels revealed by sustained perifoveal stimuli. J. Vis. 2013 V. 13 (1). P. 1–12. DOI: 10.1167/13.1.22
  • Kratochvíl T., Slanina M. Digital Video Image Quality, Digital Video. Floriano De Rango (Ed.). 2010 P. 487–500.
  • Kuang J., Johnson G.M., Fairchild M.D. iCAM06: A refined image appearance model for HDR image rendering. Journal of Visual Communication and Image Representation. 2007 V. 18 (5). P. 406–414. DOI: 10.1016/j.jvcir.2007.06.003
  • Lambooij M., Ijsselsteijn W.A., Heynderickx I. Visual discomfort of 3DTV: Assessment methods and modeling. Displays. 2011 V. 32 (4). P. 209–218. DOI: 10.1016/j.displa.2011.05.012
  • Ledig C., Theis L., Huszar F., Caballero J., Cunningham A., Acosta A., Acosta A., Aitken A., Tejani A., Totz J., Wang Z., Shi W. Photo-realistic single image super-resolution using a generative adversarial network. Proc. IEEE Conference on Computer Vision and Pattern Recognition. 2017 P. 4681–4690.
  • Li Y., Zhang Y., Xu X., He L., Serikawa S., Kim H. Dust removal from high turbid underwater images using convolutional neural networks. Opt. Laser Technol. 2019 V. 110 P. 2–6. DOI: 10.1016/j.optlastec.2017.09.017
  • Lissner I., Preiss J., Urban P., Lichtenauer M.S., Zolliker P. Image-difference prediction: From grayscale to color. IEEE Transactions on Image Processing. 2013 V. 22 (2). P. 435–446. DOI: 10.1109/TIP.2012.2216279
  • Lu H., Li Y., Zhang L., Serikawa S. Contrast enhancement for images in turbid water. J. Optical Society of America A. 2015 V. 32 P. 886–893. DOI: 10.1364/JOSAA.32.000886
  • Macdiarmid F., Darby P. J. Double-stimulus assessment of television picture quality. EBU Tech. Rev. 1982 V. 192 P. 70–79.
  • Mangeruga M., Bruno F., Cozza M., Agrafiotis P., Skarlatos D. Guidelines for underwater image enhancement based on benchmarking of different methods. Remote Sensing. 2018b. V. 10 (10). P. 1652 DOI: 10.3390/rs10101652
  • Mangeruga M., Cozza M., Bruno F. Evaluation of underwater image enhancement algorithms under different environmental conditions. J. Mar. Sci. Eng. 2018a. V. 6 (1). P. 1–13. DOI: 10.3390/jmse6010010
  • Mantiuk R.K., Tomaszewska A., Mantiuk R. Comparison of four subjective methods for image quality assessment. Comput Graph Forum. 2012 V. 31 (8). P. 2478–2491. DOI:10.1111/j.1467-8659.2012.03188.x
  • Mohammadi P., Ebrahimi-Moghadam A., Shirani S. Subjective and Objective Quality Assessment of Image: A Survey. arXiv preprint arXiv:1406.7799. 2014 50 p. http://arxiv.org/abs/1406.7799.
  • Narita N. Subjective-evaluation method for quality of coded images. IEEE Trans. Broadcasting. 1994 V. 40 P. 7–13. DOI: 10.1109/11.272416
  • Narita N., Sugiura Y. On an absolute evaluation method of the quality of television sequences. IEEE Trans. Broadcasting. 1997 V. 43 P. 26–35. DOI: 10.1109/11.566821
  • Oehlert G.W. A first course in design and analysis of experiments. University of Minnesota, Minnesota, United States of America. 2010 659 p.
  • Pinson M.H., Janowski L., Papir Z. Video Quality Assessment: Subjective testing of entertainment scenes. IEEE Signal Processing Magazine. 2015 V. 32 (1). P. 101–114. DOI: 10.1109/MSP.2013.2292535
  • Pinson M.H., Wolf S. Comparing subjective video quality testing methodologies. Proc. SPIE Visual Communications and Image Processing. 2003 V. 5150 P. 573–582. DOI: 10.1117/12.509908
  • Phillips J.B., Eliasson H. Subjective Image Quality Assessment–Theory and Practice. Camera Image Quality Benchmarking. John Wiley & Sons. 2018 P. 117–166.
  • Redi J., Liu H., Alers H., Zunino R., Heynderickx I. Comparing subjective image quality measurement methods for the creation of public databases. Proc. SPIE. Image Quality and System Performance VII. 2010 V. 7529 P. 752903 DOI: 10.1117/12.839195
  • Silverstein D., Farrell J. Efficient method for paired comparison. Journal of Electronic Imaging. 2001 V. 10 P. 394
  • Stoica A., Vertan C., Fernandez-Maloigne C. Objective and subjective color image quality evaluation for JPEG 2000 compressed images. Proc. of International Symposium on Signals, Circuits and Systems. 2003 V. 1 P. 137–140. DOI: 10.1109/SCS.2003.1226967
  • Torgerson W.S. Theory and methods of scaling. Wiley, 1985 460 p.
  • Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing. 2004 V. 13 (4). P. 600–612.
  • Watson A.B., Ahumada A.J. A standard model for foveal detection of spatial contrast. Journal of Vision. 2005 V. 5 (9). P. 717–740. DOI: 10.1167/5.9.6.
  • Watson A.B., Ahumada A.J. Predicting visual acuity from wavefront aberrations. Journal of Vision. 2008 V. 8(4).P.1-19. DOI:10.1167/8.4.17.
  • Watson A.B., Ahumada A.J. Modeling acuity for optotypes varying in complexity. Journal of Vision. 2012 V. 12 (10). P. 1–19. DOI: 10.1167/12.10.19.
  • Wyszecki G., Stiles W.S. Color science. Concepts and Methods. Quantitative data and Formulae. Wiley. 2000 950 p.
  • Xie Z.-X., Wang Z.-F. Color image quality assessment based on image quality parameters perceived by human vision system. Proc. of the 2010 IEEE International Conference on Multimedia Technology (ICMT). 2010 P. 1–4. DOI: 10.1109/ICMULT.2010.5630949
  • Xu L., Lin W., Kuo C.C.J. Visual quality assessment by machine learning. Springer Singapore. 2015 132 p. DOI: 10.1007/978-981-287-468-9
  • Yano S., Ide S., Mitsuhashi T., Thwaites H. A study of visual fatigue and visual comfort for 3D HDTV/HDTV images. Displays. 2002 V. 23 P. 191–201. DOI: 10.1016/S0141-9382 (02)00038-0
  • Zhang X., Wandell B.A. A spatial extension of CIELAB for digital color image reproduction. SID International Symposium Digest of Technical Papers: Society for Information Display. 1996 V. 27 P. 731–734. DOI: 10.1889/1.1985127
  • Zhang X., Wandell B.A. Color image fidelity metrics evaluated using image distortion maps. Signal Processing. 1998 V. 70 (3). P. 201–214. DOI: 10.1016/S0165-1684 (98)00125-X