"Quantitative experimental studies of peripheral vision are much more complicated than the studies of central vision
because of the larger volume of necessary measurements in a larger area of the visual field and because of the
difficulty of concentrating subjects' attention on peripheral test stimuli. It is widely believed that human peripheral
vision is much inferior to central vision in its capabilities and plays a supporting role in the overall process of
visual perception. However, a comparative analysis of the psychophysiological literature on studies of peripheral vision
shows that most of the authors who conducted detailed and extensive investigations of its capabilities, had found a fine
similarity between peripheral and foveal perception in conditions of a proper scaling the test object parameters –
increasing their size, brightness and/or contrast with increasing eccentricity – and optimizing other experimental
conditions according to the peculiarities of peripheral visual neural pathways and internal mechanisms of attention. The
first part of the review provides brief information about the peripheral optics of the eye, the peripheral retina
morphology and representation of the peripheral visual field in the visual areas of cerebral cortex. The second part is
devoted to the analysis of the works on peripheral visual acuity and color perception, as well as of the experiments in
which attempts were made to study “vision without fovea”, i.e. purely peripheral vision, using real or virtual occluders
that “closed” the center of the retina physically or excluded the central part of computer-generated test images by
means of a special software. In conclusion, the main changes in the prevailing ideas about peripheral vision and
promising areas for its further research are briefly discussed."
Key words:
peripheral vision, cortical magnification factor, visual acuity, color vision, vision without fovea
DOI: 10.1134/S0235009219040073
Cite:
Rozhkova G. I., Belokopytov A. V., Iomdina E. N.
Sovremennye predstavleniya o spetsifike perifericheskogo zreniya cheloveka
[Present view of the human peripheral vision specifics].
Sensornye sistemy [Sensory systems].
2019.
V. 33(4).
P. 305-330 (in Russian). doi: 10.1134/S0235009219040073
References:
- Alekseenko S.V. Neironnye seti golovnogo mozga, obespechivayushchie binokulyarnoe zrenie [Neuronal nets of the brain providing binocular vision]. Neirotekhnologii [Neurotechnology]. Ed. Shelepin Ju.E., Chihman V.N. SPb.: Izd-vo VVM, 2018 C. 186–205 (in Russian).
- Belokopytov A.V., Rozhkova G.I. Perimetricheskaya otsenka granitsy slepoi zony na krainei periferii temporalnoi setchatki [Perimetric assessment of a blind zone margin at the extreme periphery of human temporal retina]. Sensornye sistemy [Sensory systems]. 2017 V. 31(1). P. 22–30 (in Russian).
- Panova I.G., Poltavtseva R.A., Rozhkova G.I. Morfologicheskaya kharakteristika razvitiya krainei periferii setchatki v oblasti ora serrata [Characteristics of morphological development of the extreme retinal periphery near ora serrata]. Sensornye sistemy [Sensory systems]. 2018 V. 32(4). P. 302–309 (in Russian). DOI: 10.1134/S0235009218040091.
- Podladchikova L.N., Koltunova T.I., Samarin Petrushan M.V., Shaposhnikov D.G., Lomakina O.V. Sovremennye predstavleniya o mekhanizmah zritel’nogo vnimaniya [Modern ideas about the mechanisms of visual attention] Rostov-na-Donu–Taganrog: Izdatel’stvo Yuzhnogo federal’nogo universiteta [South Federal University Publishing]. 2017 168 p (in Russian).
- Rozhkova G.I., Belokopytov A.V., Gracheva M.A. Zagadki slepoi zony i koltsa povyshennoi plotnosti kolbochek na krainei periferii setchatki [Mysteries of the blind zone and cone-enriched rim at the extreme periphery of the human retina]. Sensornye sistemy [Sensory systems]. 2016 V. 30(4). P. 263–281 (in Russian).
- Rozhkova G.I., Yarbus A.L. Zavisimost’ perifericheskogo zreniya ot skorosti smeshcheniya setchatochnogo izobrazheniya [The effects of velocity of retinal image movement on peripheral vision] Biofizika [Biophysics]. 1974 V. 19(5). P. 908–912 (in Russian).
- Tarutta E.P., Iomdina E.N., Kvaratskheliya N.G., Milash S.V., Kruzhkova G.V. Perifericheskaya refrakciya: prichina ili sledstvie refraktogeneza? [Peripheral refraction: cause or effect of refraction development?] Vestnik oftal’mologii [The Russian Annals of Ophthalmology] 2017 V. 133(1). P. 70–74 (in Russian).
- Yarbus A.L. Rol' dvizhenij glaz v processe zreniya [Eye Movements and Vision]. M.: [Nauka] Nauka, 1965 166 p. (in Russian).
- Yarbus A.L., Rozhkova G.I. Osobennosti vospriyatiya ob”ektov na periferii polya zreniya [Features of perception of objects in the periphery of the visual field] Sensornye sistemy [Sensory Systems]. Leningrad, Nauka. 1977 P. 64–73 (in Russian).
- Yarbus A.L., Rozhkova G.I. Osobennosti vospriyatiya ob”ektov na periferii polya zreniya [Features of perception of objects in the periphery of the visual field] Sensornye sistemy [Sensory Systems]. Leningrad, Nauka. 1977 P. 64–73 (in Russian).
- Yarbus A.L. O rabote zritel’noj sistemy cheloveka. II. Cvet [Human visual system. II. The perceived colour] Biofizika [Biophysics]. 1975 V. 20(6). P. 1099–1104 (in Russian).
- Aubert H.R., Foerster C.F.R. Beiträge zur Kenntniss des indirecten Sehens. (I). Untersuchungen über den Raumsinn der Retina. Archiv für Ophthalmologie. 1857 V. 3 P. 1–37.
- Abramov I., Gordon J. Color vision in the peripheral retina. I. Spectral sensitivity. J. Opt. Soc. Am. 1977 V. 67(2). P. 195–202.
- Abramov I., Gordon J., Chan H. Color appearance in the peripheral retina: effects of stimulus size. J. Opt. Soc. Am. A. 1991 V. 8(2). P. 404–414.
- Ahnelt P.K. The photoreceptor mosaic. Eye. 1998 V. 12 P. 531–540.
- Anderson R.S., Thibos L.N. Sampling limits and critical bandwidth for letter discrimination in peripheral vision. J. Opt. Soc. Am. A. 1999 V. 16(10). P. 2334–2342.
- Anderson S., Mullen K., Hess R. Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors. J. Physiol. 1991 V. 442 P. 47–64.
- Atchison D.A., Mathur A.R., Varnas S.R. Visual performance with lenses correcting peripheral refractive errors. Optometry and Vision Science. 2013 V. 90(11). P. 1304–1311.
- Atchison D., Smith G. Optics of the human eye. Butterworth-Heinemann, Oxford, UK. 2000 269 p.
- Carrasco M. Visual attention: The past 25 years. Vision Research. 2011 V. 51(13). P. 1484–1525. DOI: 10.1016/j.visres.2011.04.012
- Collin S.P. A web-based archive for topographic maps of retinal cell distribution in vertebrates. Clin. Exp. Optom. 2008 V. 91(1). P. 85–95.
- Cornish E.E, Hendrickson A.E., Provis J.M. Distribution of short-wavelength-sensitive cones in human fetal and postnatal retina: early development of spatial order and density profiles. Vision Research. 2004 V.44. P. 2019–2026
- Curcio C.A., Packer O., Kalina R.E. A wholemount method for sequential analysis of photoreceptors and ganglion cells in a single retina. Vision Research. 1987a. V. 27 P. 9–15.
- Curcio C.A., Sloan K.R., Packer O., Hendrickson A. Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science. 1987b. V. 236 P. 579–582.
- Curcio C.A., Allen K. Topography of ganglion cells in human retina. J. Comp. Neurol. 1990 V. 300 P. 5–25.
- Curcio C.A., Sloan K.R., Kalina R.E., Hendrickson A.E. Human photoreceptor topography. J. Comp. Neurology. 1990 V. 292 P. 497–523. DOI: 10.1002/cne.902920402.
- Curcio C.A., Allen K.A., Sloan K.R., Lerea C.L., Hurley J.B., Klock I.B., Milam A.H. Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol. 1991 V. 312 P. 610–624.
- Dacey D.M. The mosaic of midget ganglion cells in the human retina. J. Neurosci. 1993 V. 13 P. 5334–5355.
- Dacey D.M. Primate retina: cell types, circuits and color opponency. Prog. Retin. Eye Res. 1999 V. 18 P. 737–776.
- Dacey D.M. Parallel pathways for spectral coding in primate retina. Annual Rev. Neurosci. 2000 V. 23 P. 743–775.
- Daniel P. M., Whitteridge D. The representation of the visual field on the cerebral cortex in monkeys. J. of Physiology. 1961 V. 159 P. 203–221.
- Dimmick F.L. Color. Foundations of Psychology. Boring E.G., Langfeld H.S., Weld H.P. (Eds.) New York: Wiley. 1948 656 p.
- Dobrowolsky W., Gaine A. Ueber die Lichtempfindlichkeit (Lichtsinn) auf der Peripherie der Netzhaut. Archiv für die gesamte Physiologie des Menschen und der Tiere. 1876 V. 12(1). P. 432–440. DOI:10.1007/BF01640216
- Donders F.C. Die Grenzen des Gesichtsfeldes in Beziehung zudenen der Netzhaut. Albrecht Graefes Arch Ophthal. 1877 V. 23 P. 255–280.
- Ferree C.E., Rand G. Chromatic thresholds of sensation from center to periphery of the retina and their bearing on color theory: Part 1 Psychological Review. 1919 V. 26(1). P.16–41. DOI: 10.1037/h0071940.
- Ferree C.E., Rand G., Hardy C. Refraction for the peripheral field of vision. Arch. Ophthalmol. 1931 V. 5 P. 717–73l.
- Fukuda Y., Sawai H., Watanabe M., Wakakuwa K., Morigiwa K. Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata). J. Neurosci. 1989 V. 9(7). P. 2353–2373.
- Gordon J., Abramov I. Color vision in the peripheral retina. II. Hue and saturation. J. Opt. Soc. Am. 1977 V. 67(2). P. 202–207.
- Hansen T., Pracejus L., Gegenfurtner K.R. Color perception in the intermediate periphery of the visual field. Journal of Vision. 2009 V. 9(4). Article ID 26 DOI:10.1167/9.4.26
- Helmholtz H. von. Handhuch der Physiologischen Optik. Leipzig, Verlag von Leopold Voss. 1867 874 p.
- Helmholtz H. von. Handhuch der Physiologischen Optik. Zweite umgearbeitete Auflage. Hamburg und Leipzig, Verlag von Leopold Voss. 1896 1334 p.
- Hueck A. Von den Gränzen des Sehvermögens. Archiv für Anatomie, Physiologie und wissenschaftliche Medizin. 1840 P. 82–97. URL: https://babel.hathitrust.org/cgi/ pt?id=mdp.39015023553061 (accessed 01.02.2019).
- Jordan T.R., McGowan V.A., Paterson K.B. Reading with a filtered fovea: The influence of visual quality at the point of fixation during reading. Psychon. Bull. Rev. 2012 V. 19(6). P.1078–1084. DOI: 10.3758/s13423-012-0307-x.
- Laurance L. General and practical optics. The Optical Publishing Co., NY. 1908 411 p.
- Lingnau A. Seeing without a fovea? Eye movements in reading and visual search with an artificial central scotoma. Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften. Technischen Universität CaroloWilhelmina zu Braunschweig. 2005 URL: https://dnb.info/974049999/34 (дата обращения 01.02.2019).
- Marmor D.J., Marmor M.F. Simulating vision with and without macular disease. Arch Ophthalmol. 2010 V. 128(1). P. 117–125. DOI: 10.1001/archophthalmol.
- Masland R.H. The fundamental plan of the retina. Nat. Neurosci. 2001 V. 4(9). P. 877–886.
- Masland R.H. The neuronal organization of the retina. Neuron. 2012 V. 76(2). P. 266–280.
- Mollon J.D., Regan B.C., Bowmaker J.K. What is the function of the cone-rich rim of the retina. Eye. 1998 V. 12(Pt 3b). P. 548–552.
- Moreland J.D. Peripheral colour vision. Handbook of Sensory Physiology, Vol. VII/4: Visual Psychophysics. Springer-Verlag, Berlin. 1972 812 p.
- Nagy A.L., Doyal J.A. Red-green color discrimination as a function of stimulus field size in peripheral vision. J. Opt. Soc. Am. A. 1993 V. 10(6). P. 1147–1156.
- Nakayama K., Mackeben M. Sustained and transient components of focal visual attention. Vision Research. 1989 V. 29(11). P. 1631–1647.
- Navarro R. The optical design of the human eye: a critical review. J. Optom. 2009 V. 2(1). P. 3–18.
- Østerberg G.A. Topography of the layer of rods and cones in the human retina. Acta ophthal. 1935 Suppl. V. 13(6). P. 1–102.
- Polyak S.L. The retina. Chicago: Univ. Chicago Press. 1941 607 p.
- Ramon y Cajal S. Morfologia y conexiones de los elementos de la retina de las aves. Rev. Trimest. De Histol. Norm. y Patol. 1888 № 1 P. 11–16.
- Rayner K., Bertera J.H. Reading without a fovea. Science. 1979 V. 206(4417). P. 468–469. DOI: 10.1126/science.504987
- Rovamo J., Raninen A. Critical f licker frequency and Mscaling of stimulus size and retinal illuminance. Vision Research. 1984 V. 24 P. 1127–1131.
- Rovamo J., Virsu V. An estimation and application of the human cortical magnification factor. Exp. Brain Res. 1979 V. 37(3). P. 495–510.
- Rovamo J., Virsu V., Näsänen R. Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature. 1978 V. 271 P. 54–56.
- Rozhkova G.I., Iomdina E.N., Selina O.M., Belokopytov A.V., Nikolaev P.P. Contribution of the marginal peripheral retina to color constancy: evidence obtained due to contact lens with implanted occluder. Sensory Systems. 2019b. V. 33(2). P. 113–123.
- Rozhkova G.I., Selina O.M., Nikolayev P.P., Belokopytov A.V. A new approach to investigate peripheral vision: Contact lens with opaque central part. 41st European Conference on Visual Perception (ECVP) 2018 Trieste. Perception. 2019a. V. 48(Suppl.). P. 131
- Simpson M.J. Mini-review: Far peripheral vision. Vision Res. 2017 V. 140 P. 96–105. DOI: 10.1016/j.visres.2017.08.001.
- Smith G., Atchison D., Avudainayagam C., Avudainayagam K. Designing lenses to correct peripheral refractive errors of the eye. J. Opt. Soc. Am. A. 2002 V. 19(1). P. 10–18.
- Strasburger H., Rentschler I., Jüttner M. Peripheral vision and pattern recognition: a review. Journal of Vision. 2011 V. 11(13). P. 1–82. DOI:10.1167/11.5.13
- Tabernero J., Ohlendorf A., Fischer M.D., Bruckmann A., Schiefer U., Schaeffel F. Peripheral refraction profiles in subjects with low foveal refractive errors. Optometry and Vision Science. 2011 V. 88(3). P. 388–94.
- To M.P.S., Regan B.C., Wood D., Mollon, J.D. Vision out of the corner of the eye. Vision Research. 2011 V. 51(1). P. 203–214.
- Troxler I.P.V. Über das Verschwinden gegebener Gegenstände innerhalb unsers Gesichtskreises. Ophthalmologische Bibliothek II. Jena, Fromman. 1804 V. 2(2). P. 51–53.
- Tyler C.W. Analysis of visual modulation sensitivity III. Meridional variations in peripheral f licker sensitivity. J. Opt. Soc. Am. A. 1987 V. 4(8). P. 1612–1619.
- Tyler C.W. Peripheral color demo. i-Perception. 2015 V. 6(6). P. 2041669515613671 DOI: 10.1177/2041669515613671.
- Tyler C.W. Peripheral color vision and motion processing. Human Vision and Electronic Imaging. 2016 V. 5 P. 1–5. DOI: 10.2352/ISSN.2470-1173.2016.16HVEI-138
- van Esch J.A., Koldenhof E.E., van Doorn A.J., Koenderink J.J. Spectral sensitivity and wavelength discrimination of the human peripheral visual field. J. Opt. Soc. Am. A. 1984 V. 1(5). P. 443–450.
- Virsu V., Rovamo J. Visual resolution, contrast sensitivity, and the cortical magnification factor. Exp. Brain Res. 1979 V. 37(3). P. 475–494.
- Virsu V., Näsäanen R., Osmoviita K. Cortical magnification and peripheral vision. J. Opt. Soc. Am. A. 1987 V. 4(8). P. 1568–1578.
- Volkmann A.W. Sehen. Handwörterbuch der Physiologie mit Rücksicht auf physiologische Pathologie mit Kupfern und in den Text eingedruckten Holzschnitten. T. III. Vieweg, 1846 926 c.
- Wade N. Image, eye, and retina (invited review). J. Opt. Soc. Am. A. 2007 V. 24(5). P. 1229–1249.
- Wang Y-Z., Thibos L.N., Bradley A. Effects of refractive error on detection acuity and resolution acuity in peripheral vision. Invest Ophthalmol Vis Sci. 1997 V. 38 P. 2134–2143.
- Wallman J, Winawer J. Homeostasis of eye growth and the question of myopia. Neuron. 2004 V. 43 P. 447–468.
- Wertheim T. Über die indirekte Sehschärfe. Zeitschrift für Psychologie und Physiologie der Sinnesorgane. 1894 V. 7 P. 172–187. URL: http://echo.mpiwg-berlin.mpg.de/MPIWG:YSKVNKH9 (accessed 01.02.2019).
- Wertheim T. (translated by Dunsky I.L. Original work published in 1891). Peripheral visual acuity. Ameican Journal of Optometry and Physiological Optics. 1980 V. 57(12). P. 915–924.
- Williams R.W. The human retina has a cone-enriched rim. Vis. Neurosci. 1991 V. 6(4). P. 403–406.
- Wooten B.R., Wald G. Color-vision mechanisms in the peripheral retinas of normal and dichromatic observers. J Gen Physiol. 1973 V. 61(2). P. 125–145.