• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

The structure of the human retina: classical and modern data

© 2019 S. V. Alekseenko

I.P. Pavlov Institue of Physioilogy, Russian Academy of Sciences, 199034 St. Petersburg, Makarova emb. 6, Russia

Received 25 Feb 2019

A brief overview of currently available data on human retina is presented. Classical information on the general structure and cellular composition of this first neural department of visual system is given, as well as data obtained using new improved research methods that significantly enriched and detailed the previously existing knowledge of the retina.

Key words: man and primates, retinal morphology, cell types

DOI: 10.1134/S0235009219040024

Cite: Alekseenko S. V. Struktura setchatki glaza cheloveka: klassicheskie i sovremennye dannye [The structure of the human retina: classical and modern data]. Sensornye sistemy [Sensory systems]. 2019. V. 33(4). P. 269-286 (in Russian). doi: 10.1134/S0235009219040024

References:

  • Vakhrameeva O.A., Sukhinin M.V., Moiseenko G.A., Muravieva S.V., Pronin S.V., Volkov V.V., Shelepin Y.E. Izuchenie porogov vospriyatiya v zavisimosti ot geometrii fovea [Investigation of dependence of perception thresholds on fovea geometry]. Sensornye sistemy [Sensory systems]. 2013. V. 27 (2). P. 122–129 (in Russian).
  • Ahmad K.M., Klug K., Herr S., Sterling P., Schein S. Cell density ratios in a foveal patch in macaque retina. Visual Neurosci. 2003. V. 20. P. 189–209.
  • Ahnelt P., Keri C., Kolb H. Identification of pedicles of putative blue-sensitive cones in the human retina. J. Comp. Neurol. 1990. V. 293. P. 39–53. https://doi.org/10.1002/cne.902930104
  • Balasubramanian V., Sterling P. Receptive fields and functional architecture in the retina. J. Physiol. 2009. 587. 12. P. 2753–2767. https://doi.org/10.1113/jphysiol.2009.170704
  • Bloomfield S.A., Dacheux R.F. Rod vision: pathways and processing in the mammalian retina. Prog. Retin. Eye Res. 2001. V. 20. P. 351–384.
  • Bordt A.S., Long Y., Kouyama N., Yamada E.S., Hannibal J., Marshak D.W. Wavy Multistratified Amacrine Cells in the Monkey Retina Contain Immunoreactive Secretoneurin. Peptides. 2017. V. 94. P. 33–42.
  • Boycott B.B., Wassle H. Parallel processing in the mammalian retina: the Proctor Lecture. Invest. Ophthalm. Visual Sci. (JOVS). 1999. V. 40 (7). P. 1313–1327.
  • Calkins D.J., Sterling P. Microcircuitry for two types of achromatic ganglion cell in primate fovea. J. Neurosci. 2007. V. 27 (10). P. 2646–2653.
  • Calkins D.J., Tsukamoto Y., Sterling P. Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. J. Neurosci. 1998. V. 18. P. 3373–3385.
  • Chandra A.J., Lee S.C.S., Grünert U. Thorny ganglion cells in marmoset retina: Morphological and neurochemical characterization with antibodies against calretinin. J. Comp. Neurol. 2017. V. 525 (18). P. 3962–3974. https://doi.org/10.1002/cne.24319
  • Chapot C.A., Euler T., Schubert T. How do horizontal cells 'talk' to cone photoreceptors? Different levels of complexity at the cone-horizontal cell synapse. J. Physiol. 2017. V. 595 (16). P. 5495–5506. https://doi.org/10.1113/JP274177
  • Chatterjee S., Callaway E. S cone contributions to the magnocellular visual pathway in macaque monkey. Neuron. 2002. V. 35 (6). P. 1135–1146.
  • Chichilnisky E.J., Kalmar R.S. Functional asymmetries in ON and OFF ganglion cells of primate retina. J. Neurosci. 2002. V. 22. P. 2737–2747. DOI: 20026215
  • Crook J.D., Peterson B.B., Packer O.S., Robinson F.R., Gamlin P.D., Troy J.B., Dacey D.M. The smooth monostratified ganglion cell: evidence for spatial diversity in the Y-cell pathway to the LGN and superior colliculus in the macaque monkey. J. Neurosci. 2008. V. 28 (48). P. 12654–12671. https://doi.org/10.1523/JNEUROSCI.2986-08.2008
  • Curcio C.A., Allen K. Topography of ganglion cells in human retina. J. Comp. Neurol. 1990. V. 300. P. 5–25. https://doi.org/10.1002/cne.903000103
  • Curcio C.A., Sloan K.R., Kalina R.E., Hendrickson A.E. Human photoreceptor topography. J. Comp. Neurol. 1990. V. 292. P. 497–523. https://doi.org/10.1002/cne.902920402
  • Curcio C.A., Allen K.A., Sloan K.R., Lerea C.L., Hurley J.B., Klock I.B., Milam A.H. Distribution and morphology of human cone photoreceptors stained with antiblue opsin. J. Comp. Neurol. 1991. V. 312. P. 610–624. https://doi.org/10.1002/cne.903120411
  • Dacey D.M. Physiology, morphology and spatial densities of identified ganglion cell types in primate retina. Ciba Found Symp. 1994. V. 184. P. 12–28.
  • Dacey D.M. Parallel pathways for spectral coding in primate retina. Annu Rev. Neurosci. 2000. V. 23. P. 743–775. https://doi.org/10.1146/annurev.neuro.23.1.743
  • Dacey D.M., Packer O.S. Colour coding in the primate retina. diverse cell types and cone-specific circuitry. Curr. Opin. Neurobiol. 2003. V. 13. P. 421–427.
  • Dacey D.M., Peterson B.B., Robinson F.R., Gamlin P.D. Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron. 2003. V. 37. P. 15–27.
  • Dacey D.M., Liao H.W., Peterson B.B., Robinson F.R., Smith V.C., Pokorny J., Yau K.W., Gamlin P.D. Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature. 2005. V. 433. P. 749–754. https://doi.org/10.1038/nature03387
  • Dacey D.M., Crook J.D., Packer O.S. Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Vis. Neurosci. 2014. V. 31 (2). P. 139–151. https://doi.org/10.1017/S0952523813000230
  • Drasdo N., Millican C.L., Katholi C.R., Curcio C.A. The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vision Res. 2007. V. 47 (22). P. 2901–2911. https://doi.org/10.1016/j.visres.2007.01.007
  • Field G.D., Sher A., Gauthier J.L., Greschner M., Shlens J., Litke A.M., Chichilnisky E.J. Spatial properties and functional organization of small bistratified ganglion cells in primate retina. J. Neurosci. 2007. V. 27 (48). P. 13261–1372. https://doi.org/10.1523/JNEUROSCI.3437-07.2007
  • Field G.D., Gauthier J.L., Sher A., Greschner M., Machado T.A., Jepson L.H., Shlens J., Gunning D.E., Mathieson K., Dabrowski W., Paninski L., Litke A.M., Chichilnisky E.J. Functional connectivity in the retina at the resolution of photo-receptors. Nature. 2010. V. 467. P. 673–677.
  • Goodchild A.K., Ghosh K.K., Martin P.R. Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus. J. Comp. Neurol. 1996. V. 366 (1). P. 55–75. https://doi.org/10.1002/(SICI)1096-9861
  • Hannibal J., Christiansen A.T., Heegaard S., Fahrenkrug J., Kiilgaard J.F. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J. Comp. Neurol. 2017. V. 525 (8). P. 1934–1961. https://doi.org/10.1002/cne.24181
  • Hendry S.H.C., Reid R.C. The koniocellular pathway in primate vision. Annu. Rev. Neurosci. 2000. V. 23. P. 127–153.
  • Hsu A., Smith R.G., Buchsbaum G., Sterling P. Cost of cone coupling to trichomacy in primate fovea. J. Opt. Soc. Am. A. Opt. Image Sci. 2000. V. 17. P. 635–640.
  • Jacoby R., Stafford D., Kouyama N., Marshak D. Synaptic inputs to ON parasol ganglion cells in the primate retina. J. Neurosci. 1996. V. 16 (24). P. 8041–8056.
  • Joo H.R., Peterson B.B., Haun T.J., Dacey D.M. Characterization of a novel large-field cone bipolar cell type in the primate retina: Evidence for selective cone connections. Visual Neurosci. 2010. P. 1–9. https://doi.org/10.1017/S0952523810000374
  • Jusuf P.R., Martin P.R., Grünert U. Random wiring in the midget pathway of primate retina. Neurosci. 2006. V. 26 (15). P. 3908–3917. https://doi.org/10.1523/JNEUROSCI.4891-05.2006
  • Ke J.B., Wang Y.V., Borghuis B.G., Cembrowski M.S., Riecke H., Kath W.L, Demb J.B., Singer J.H. Adaptation to background light enables contrast coding at rodbipolar cell synapses. Neuron. 2014. V. 81 (2). P. 388–401. https://doi.org/10.1016/j.neuron.2013.10.054
  • Klug K., Herr S., Ngo I.T., Sterling P., Schein S. Macaque retina contains an S-cone OFF midget pathway. J. Neurosci. 2003. V. 23. P. 9881–9887.
  • Kolb H. Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. Philos Trans R Soc Lond B Biol Sci. 1970. V. 258 (823). P. 261–283. https://doi.org/10.1098/rstb.1970.0036
  • Kolb H. Amacrine cells of the mammalian retina: neurocircuitry and functional roles. Eye (Lond). 1997 V. 11 P. 904–923. https://doi.org/10.1038/eye.1997.230
  • Kolb H., Linberg K.A., Fisher S.K. Neurons of the human retina: a Golgi study. J. Comp. Neurol. 1992 V. 318 (2). P. 47–87. https://doi.org/10.1002/cne.903180204
  • Lee S.C., Telkes I., Grünert U. S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus. Eur. J. Neurosci. 2005 V. 22 (2). P. 437–447. https://doi.org/10.1111/j.1460-9568.2005.04231.x
  • Liao H.W., Ren X., Peterson B.B., Marshak D.W., Yau K.W., Gamlin P.D., Dacey D.M. Melanopsin-expressing ganglion cells on macaque and human retinas form two morphologically distinct populations. J. Comp.Neurol. 2016 V. 524 (14). P. 2845–2872.
  • Mariani A.P. The neuronal organization of the outer plexiform layer of the primate retina. Int Rev Cytol. 1984 V. 86 P. 285–320.
  • Masland R.H. The neuronal organization of the retina. Neuron. 2012 V. 76 (2). P. 266–280. https://doi.org/10.1016/j.neuron.2012.10.002
  • Packer O.S., Verweij J., Li P.H., Schnapf J.L., Dacey D.M. Blue-yellow opponency in primate S cone photoreceptors. J. Neurosci. 2010 V. 30 (2). P. 568–572. https://doi.org/10.1523/JNEUROSCI.4738-09.2010
  • Percival K.A., Koizumi A., Masri R.A., Buzás P., Martin P.R., Grünert U. Identification of a pathway from the retina to koniocellular layer K1 in the lateral geniculate nucleus of marmoset. J. Neurosci. 2014 V. 34 (11). P. 3821–3825 https://doi.org/10.1523/JNEUROSCI.4491-13.2014
  • Perry V.H., Cowey A. The ganglion cell and cone distributions in the monkey’s retina: implications for central magnification factors.Vision Res. 1985 V. 25 P. 1795–1810
  • Perry V.H., Oehler R., Cowey A. Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience. 1984 V. 12 (4). P. 1101–1123
  • Polyak S.L. The retina. Chicago: Univ. Chicago Press. 1941 607 p.
  • Provis J.M., Penfold P.L., Cornish E.E., Sandercoe T.M., Madigan M.C. Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration. Clin Exp Optom. 2005 V. 88 (5). P. 269–281
  • Puller C., Manookin M.B., Neitz J., Rieke F., Neitz M. Broad thorny ganglion cells: a candidate for visual pursuit error signaling in the primate retina. J. Neurosci. 2015 V. 35 (13). P. 5397–5408. https://doi.org/10.1523/JNEUROSCI.4369-14.2015
  • Ramon y Cajal S. La retine des vertebres. La Cellule. 1893 V. 9 P. 119–257.
  • Schein S., Ngo I.T., Huang T.M., Klug K., Sterling P., Herr S. Cone synapses in macaque fovea: I. Two types of non-S cones are distinguished by numbers of contacts with OFF midget bipolar cells. Vis Neurosci. 2011 V. 28 (1). P. 3–16. https://doi.org/10.1017/S0952523810000477
  • Sharpe L.T., Stockman A., MacLeod D.I. Rod flicker perception: scotopic duality, phase lags and destructive interference. Vision Res. 1989 V. 29 P. 1539–1559.
  • Strettoi E., Masri R.A., Grünert U. AII amacrine cells in the primate fovea contribute to photopic vision. SciRep. 2018 V. 8 (1). P. 16429 https://doi.org/10.1038/s41598-018-34621-2
  • Sun H., Smithson H.E., Zaidi Q., Lee B.B. Do magnocellular and parvocellular ganglion cells avoid short-wave-length cone input? Vis Neurosci. 2006 V. 3–4. P. 441–446 https://doi.org/10.1017/S0952523806233042
  • Tailby C., Solomon S.G., Lennie P. Functional asymmetries in visual pathways carrying S-cone signals in macaque. J. Neurosci. 2008 V. 28 (15). P. 4078–4087. https://doi.org/10.1523/JNEUROSCI.5338-07.2008
  • Thoreson W., Dacey D.M. Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina. Physiol. Rev. 2019 V. 99 (3). P. 1527–1573. https://doi.org/10.1152/physrev.00027.2018
  • Tick S., Rossant F., Ghorbel I., Gaudric A., Sahel J-A., Chaumet-Riffaud P., Paques M. Foveal shape and structure in a normal population. Invest. Ophthalmol. Vis. Sci. 2011 V. 52 (8). P. 5105–5110. https://doi.org/10.1167/iovs.10-7005
  • Tsukamoto Y., Omi N. ON Bipolar Cells in Macaque Retina: Type-Specific Synaptic Connectivity with Special Reference to OFF Counterparts. Front. Neuroanat. 2016 V. 10 P. 104 https://doi.org/10.3389/fnana.2016.00104
  • Verweij J., Dacey D.M., Peterson B.B., Buck S.L. Sensitivity and dynamics of rod signals in H1 horizontal cells of the macaque monkey retina. Vision Res. 1999 V. 39 (22). P. 3662–3672.
  • Wässle H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 2004 V. 5 P. 747–757.
  • Williams R.W. The human retina has a cone-enriched rim. Vis. Neurosci. 1991 V. 6 (4). P. 403–406.
  • Wool L.E., Crook J.D., Troy J.B., Packer O.S., Zaidi Q., Dacey D.M. Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina. Neurosci. 2018 V. 38 (6). P. 1520–1540. https://doi.org/10.1523/JNEUROSCI.1688-17.2017
  • Yamada E.S., Bordt A.S., Marshak D.W. Wide-field ganglion cells in macaque retinas. Vis. Neurosci. 2005 V. 22 P. 383–393. https://doi.org/10.1017/S095252380522401X