• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Influence of the pre-exposure of visual objects on the discrimination of sounds in children with a delay in mental and language development

© 2018 L. V. Cherenkova, L. V. Sokolova

St. Petersburg State University, 199034 Saint Petersburg, University Emb., 7/9, Russia

Received 20 Feb 2018

One of the important directions in studying the process of the perception is the study of the mechanisms of multisensory integration, which allow the body to more accurately identificate the objects of the surrounding world. Another important direction in the study of the role of perception is the study of the process of distribution of attention, through which the selection of significant characteristics for the organization of adaptive behavior is carried out. Of particular interest is the study of the specifics of the formation of mechanisms of multisensory integration and voluntary attention in children with neurological disorders. The priming paradigm was used as a research model, which allows determining the distribution of attention between perceived stimuli, as well as the temporal dynamics of the process of identification of a heterosensory object. In the course of the study, it was shown that in children with typical development, a facilitating effect on the discrimination of sound stimuli in the pre-exposure of congruent visual images compared with incongruent ones is reliable in the interstimulation intervals in the range 50–100 and 200–500 ms. In children with a delay in mental development, a significant manifestation of the facilitating influence depended on the level of general underdevelopment of speech. In children with a delay in mental development who have IV–III level of general speech underdevelopment (GSU), the facilitating effect was observed at interstimulant intervals in the range of 50–150 and 300–500 ms, in children with a delay in mental development who have III level of general speech underdevelopment, – 200–500 ms, and in children with a delay in mental development who have III–II level of general speech underdevelopment, – is 300–500 ms.

Key words: perception, intersensory integration, attention distribution, mental retardation, preschool age

DOI: 10.1134/S0235009218030046

Cite: Cherenkova L. V., Sokolova L. V. Vliyanie predvaryayushchei ekspozitsii zritelnykh izobrazhenii na razlichenie zvukovykh stimulov u detei s zaderzhkoi psikhicheskogo razvitiya [Influence of the pre-exposure of visual objects on the discrimination of sounds in children with a delay in mental and language development]. Sensornye sistemy [Sensory systems]. 2018. V. 32(3). P. 208-221 (in Russian). doi: 10.1134/S0235009218030046

References:

  • Ahmetzanova A.I. Osobennosti anticipationnoj deyatel’nostipri obshhem nedorazvitii rechi u detej starshego doshkolnogo vozrasta. Diss. kand. psih. nauk [Features of anticipatory activity in general underdevelopment of speech in children of senior preschool age. Cand. psych. sci. diss.]. Kazan. 2004. 158 p. (in Russian).
  • Il’ina M.N. Psihologicheskaya ozenka intellekta u detej [Psychological evaluation of intelligence in children] Saint Petersburg. Piter, 2009. 366 p. (in Russian).
  • Machinskaya R.I. Upravlyajushhie sistemy mozga i ih morfofunkcional’noe sozrevanie u detej [Control systems of the brain and their morphofunctional maturation in children]. Mozgovye mehanizmy formirovanjy poznavatel’noj deyatel’nosti v predshkol’nom I mladshemshkol’nom vozraste [Brain mechanisms of formation of cognitive activity in the preschool and junior school age]. Pod redakciey Machinskoy R.I., Farber D.A. [Eds. Machnskaya R.I., Farber D.A.] Moskow. MPSU; Voronezh. MODEK, 2014. 440 p. (in Russian).
  • Nishheva N.V. Rechevaya karta rebenka [Speech card of the child]. Moskow. Detstvo-Press Publ., 2007. 214 p. (in Russian).
  • Falikman M.V., Kojfman A.Ya. Vidy prajminga v issledovoniyah vospriyatiya I perzeptivnogo vnimaniya. Chast’ 1. [Types of priming in the study of perception and perceptive attention. Part 1]. Vestnik Moskovskogo universiteta [Moscow University Psychology Bulletin]. 2005. Series 14. № 3. P. 86–97 (in Russian).
  • Cherenkova L.V., Sokolova L.V. Osobennosti formirovaniya zritel’no-sluhovih assoziaziy v usloviyah normy i patologii [Features of the formation of visual auditory associations in conditions of norm and pathology]. Psihologiya obrazovaniya v polikul’turnom prostranstve [Educational Psychology in Polycultural Space]. 2011. V. 2. № 14. P. 80–88 (in Russian).
  • Cherenkova L.V., Sokolova L.V. Osobennosti invariantnogo opoznaniya zritel’nogo izobrazheniya u detey doshkol’nogo vozrasta s tipichnym I atipichnym razvitiem [Characteristics of invariant recognition of visual objects in preschool children with typical and atypical development]. Fiziologiya cheloveka [Human Physiology]. 2016. Т. 42. № 3. P. 74–81. 10.7868/S0131164616010069 (in Russian).
  • Yahina M.T. Jeksperimental’noe izuchenie osobennostey zritel’nogo vospriyatiya u detey s narusheniyami rechi [Experimental study of the peculiarities of visual perception in children with speech disorders]. Molodoj uchenyj [Young scientist ]. 2011. № 2. P. 139–142.
  • Bahrick L.E., Lickliter R. Intersensory redundancy guides attentional selectivity and perceptual learning in infancy. Developmental Psychology. 2000. V. 36. № 2. P. 90–201. 10.1037/0012-1649.36.2.190.
  • Bauer J., Magg S., Wermter S. Attention modeled as information in learning multisensory integration. Neural Networks. 2015. V. 65. P. 44–52. 10.1016/j.neunet.2015.01.004.
  • Behrmann M, Thomas C, Humphreys K. Seeing it differently: visual processing in autism. Trends Cogn. Sci. 2006. V. 10. № 6. P. 258–264. 10.1016/j.tics.2006.05.001.
  • Beker S., Foxe J.J., Molholm S. Ripe for solution: Delayed development of multisensory processing in autism and its remediation. Neuroscience and Biobehavioral Reviews. 2018. V. 84. P. 182–192. 10.1016/j.neubiorev.2017.11.008.
  • Berry M.J., Brivanlou I.H., Jordan T.A., Meister M. Anticipation of moving stimuli by the retina. Nature. 1999. V. 398. № 6725. P. 334–338. 10.1234/12345678.
  • Bishop D.V.M. Speech and language difficulties. Child and Adolescent Psychiatry. Eds. Rutter M., Taylor E. 4th edition. Oxford. Blackwell Science. 2002. P. 664–681.
  • Brandwein A.B., Foxe J.J., Butler J.S., Frey H.P., Bates J.C., Shulman L.H., Molholm S. Neurophysiological indices of atypical auditory processing and multisensory integration are associated with symptom severity in autism. J. of Autism and Developmental Disorders. 2015. V. 45. №1. P. 230–244. 10.1007/s10803-014-2212-9.
  • Burack J.A. Selection attention deficit in persons with autism: preliminary evidence of inefficient attentional lens. J. of Abnormal Psychology. 1994. V. 103. № 3. P. 535–543. 10.1037/0021-843X.103.3.535.
  • Burr D., Gori M. Multisensory Integration Develops Late in Humans. The Neural Bases of Multisensory Processes. Eds. Murray M.M, Wallace M.T., Boca Raton (FL). CRC Press/Taylor and Francis; 2012. Chapter 18. P. 1–18.
  • Cowie D., Makin T.R., Bremner A.J. Children’s responses to the rubber-hand illusion reveal dissociable pathways in body representation. Psychol. Sci. 2013. V. 24. № 5. P. 762–769. 10.1016/j.jecp.2015.10.003.
  • Cowie D., Sterling S., Bremner A.J. The development of multisensory body representation and awareness continues to 10 years of age: evidence from the rubber hand illusion. J. Exp. Child Psychol. 2016. V. 142. P. 230–238. 10.1177/0956797612462902.
  • Diaconescu A.O., Hashe L., McIntosh A.R. Visual dominance and multisensory integration changes with age. NeuroImage. 2013. V. 65. № 1. P. 152–166. 10.1016/j.neuroimage.2012.09.057.
  • Driver J., Noesselt T. Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron. 2008. V. 57. № 1. P. 11–23. 10.1016/j.neuron.2007.12.013.
  • Dye M.W.G. Temporal entrainment of visual attention in children: Effects of age and deafness. Vision Research. 2014. V. 105. № 12. P. 29–36. 10.1016/j.visres.2014.09.001.
  • Ernst M.O. Multisensory integration: A late bloomer. Current Biology. 2008. V. 18. № 12. P. R519–R521. 10.1016/j.cub.2008.05.002.
  • Fiebelkorn I.C., Foxe J.J., McCourt M.E., Dumas K.N., Molholm S. Atypical category processing and hemispheric asymmetries in high-functioning children with autism: Revealed through high-density EEG mapping. Cortex. 2013. V. 49. № 5. P. 1259–1267. 10.1016/j.cortex. 2012.04.007.
  • Flevaris A.V., Bentin S., Robertson L.C. Attention to hierarchical level influences attentional selection of spatial scale. J. of Experimental Psychology: Human Perception and Performance. 2011. V. 37. № 1. P. 12–22. 10.1037/a0019251.
  • Fort A., Giard M.-H. Multiple electrophysiological mechanisms of audiovisual integration in human perception. The handbook of multisensory processes. Eds. Calvert G.A., Spence S., Stein B.E. Cambridge. MA: MIT Press. 2004. P. 503–513.
  • Fujisaki W., Shimojo S., Kashino M., Nishida S. Recalibration of audiovisual simultaneity. Nat. Neurosci. 2004. V. 7. № 7. P. 773–778. 10.1038/nn1268.
  • Giard M.H., Peronnet F. Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J. Cogn. Neurosci. 2006. V. 11. № 5. P. 473–490. 10.1162/089892999563544.
  • Gori M. Multisensory integration and calibration in children and adults with and without sensory and motor disabilities. Multisensory Research. 2015.
  • Gori M., Sandini G., Burr D. Development of visuo-auditory integration in space and time. Frontiers in Integrative Neuroscience. 2012. V. 6. P. 77–84. 10.3389/fnint.2012.00077.
  • Greenfield K., Ropar D., Themelis K., Ratcliffe N., Newport R. Developmental Changes in Sensitivity to Spatial and Temporal Properties of Sensory Integration Underlying Body Representation. Multisensory Research. 2017. V. 30. № 6. P. 467–484. 10.1163/22134808-00002591.
  • Hammond-Kenny A., Bajo V.M., King A.J., Nodal F.R. Behavioural benefits of multisensory processing in ferrets. Europ. J. of Neurosci. 2016. V. 45. № 2. P. 278–289. 10.1111/ejn.13440.
  • Keysers C., Perrett D.I. Visual masking and RSVP reveal neural competition. Trends in Cognitive Sciences. 2002. V. 6. № 1. P. 120–125. 10.1016/S1364-6613(00)01852-0.
  • Klotz W., Neumann O. Motor activation without conscious discrimination in metacontrast masking. J. of Experimental Psychology: Human Perception and Performance. 1999. V. 25. Т 4. P. 976–992. 10.1037/0096-1523.25.4.976.
  • Kristjansson A., Campana G. Where perception meets memory: A review of repetition priming in visual search tasks. Attention, Perception and Psychophysics. 2010. V. 72. № 1. P. 5–18. 10.3758/APP.72.1.5.
  • Kwok S.C., Fantoni C., Tamburini L., Wang L., Gerbino W. A biphasic effect of cross-modal priming on visual shape recognition. Acta Psychologica. 2018. V. 183. № 2. P. 43–50. 10.1016/j.actpsy.2017.12.013.
  • Lee J., Spence Ch. On the spatial specificity of audiovisual crossmodal exogenous cuing effects. Acta Psychologica. 2017. V. 177. № 6. P. 78–88. 10.1016/j.actpsy. 2017.04.012.
  • Lewkowicz D.J. Early experience and multisensory perceptual narrowing. Developmental Psychobiology. 2014. V. 56. № 2. P. 292–315. 10.1002/dev.21197.
  • Lucan J.N., Foxe J.J., Gomez-Ramirez M., Sathian K., Molholm S. Tactile shape discrimination recruits human lateral occipital complex during early perceptual processing. Human Brain Mapping. 2010. V. 31. № 11. P. 1813–1821. 10.1002/hbm.20983.
  • Mercier M.R., Foxe J.J., Fiebelkorn I.C., Butler J.S., Schwartz T.H., Molholm S. Auditory driven phase reset in visual cortex: Human electrocorticography reveals mechanisms of early multisensory integration. NeuroImage. 2013. V. 79. P. 19–29. 10.1016/j.neuroimage. 2013.04.060.
  • Mercier M.R., Molholm S., Fiebelkorn I.C., Butler J.S., Schwartz T.H., Foxe J.J. Neuro-oscillatory phase alignment drives speeded multisensory response times: an electro-corticographic investigation. J. Neurosci. 2015. V. 35.№ 22. P. 8546–8557. 10.1523/JNEUROSCI.4527-14.2015.
  • Miller J. Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology. 1982. V. 14. №2. P. 247–279. 10.1016/0010-0285(82)90010-X.
  • Molholm S., Foxe J.J. Making sense of multisensory integration. Europ. J. of Neurosci. 2010. V. 31. № 10. P. 1709–1712. 10.1016/j.neuroimage.2013.04.060.
  • Molholm S., Ritter W., Murray M.M., Javitt D.C., Schroeder C.E., Foxe J.J. Multisensory auditory-visual interactions during early sensory processing in humans: A high-density electrical mapping study. Cognitive Brain Research. 2002. V. 14. № 1. P. 115–128. 10.1016/S0926-6410(02)00066-6.
  • Nath A.R., Beauchamp M.S. A neural basis for interindividual differences in the McGurk effect, a multisensory speech illusion. NeuroImage. 2012. V. 59. № 1. P. 781–787. 10.1016/j.neuroimage.2011.07.024.
  • Neil P.A., Chee-Ruiter Ch., Scheier Ch., Lewkowicz D.J., Shimojo Sh. Development of multisensory spatial integration and perception in humans. Develop. Sci. 2006. V. 9. № 5. P. 454–464. 10.1111/j.1467-7687.2006.00512.x.
  • Neumann O., Klotz W. Motor responses to nonreportable, masked stimuli: Where is the limit of direct parameter specification? Attention and Performance. XV: Conscious and nonconscious information processing. Eds. Umilta C., Moscovitch M. Cambridge. Mass.: MIT Press. 1994. P. 123–150.
  • Noel J.P., De Niear M.A., Stevenson R., Alais D., Wallace M.T. Atypical rapid audio-visual temporal recalibration in autism spectrum disorders. Autism Res. 2017. V. 10. № 1. P. 121–129. 10.1016/j.neuroimage.2011.07.024.
  • Pellicano E., Gibson L. Investigating the functional integrity of the dorsal visual pathway in autism and dyslexia. Neuropsychologia. 2008. V. 46. № 10. P. 2593–2596. 10.1016/j.neuropsychologia.2008.04.008.
  • Posner M.I., Snyder C.R. Facilitation and inhibition in the processing of signals. Attention and performance. EdsV. In P. M. A. Rabbitt, S. Dornic. New York: Academic Press. 1975. Р. 669–682.
  • Raab D.H. Division of psychology: Statistical facilitation of simple reaction times. Transactions of the New York Academy of Sciences. 1962. V. 24. Iss. 5. Ser. II. P. 574–590. 10.1111/j.2164-0947.1962.tb01433.x.
  • Rohe T., Noppeney U. Distinct computational principles govern multisensory integration in primary sensory and association cortices. Current Biology. 2016. V. 26. № 4. P. 509–514. 10.1016/j.cub.2015.12.056.
  • Ross L.A., Del Bene V.A., Molholm S., Frey H.-P., Foxe J.J. Sex differences in multisensory speech processing in both typically developing children and those on the autism spectrum. Frontiers in Neuroscience. 2015. V. 9. P. 185–194. 10.3389/fnins.2015.00185.
  • Turi M., Karaminis T., Pellicano E., Burr D. No rapid audiovisual recalibration in adults on the autism spectrum. Sci. Rep. 2016. V. 6. P. 217–256. 10.1038/srep21756.
  • Van der Burg E., Alais D., Cass J. Rapid recalibration to audiovisual asynchrony. J. Neurosci. 2013. V. 33. № 37. P. 14633–14637. 10.1523/JNEUROSCI.1182-13.2013.
  • Vroomen J., Keetels M., de Gelder B., Bertelson P. Recalibration of temporal order perception by exposure to audiovisual asynchrony. Cognitive Brain Research. 2004. V. 22. № 1. P. 32–35. 10.1016/j.cogbrainres.2004.07.003.
  • Wallace M.T., Stein B.E. Early experience determines how the senses will interact. J. of Neurophysiology. 2007. V. 97. № 1. P. 921–926. 10.1152/jn.00497.2006.