• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

A method of object recognition based on formal properties specification applied to locating objects in aerial photographs

© 2018 L. M. Teplyakov, A. S. Grigoryev, I. A. Kunina, S. A. Gladilin

Institute for Information Transmission Problems RAS, 127051 Moscow, Bolshoy Karetny per. 19, Russia

Received 21 Mar 2018

We investigate the current relevance of the classical structured approach to recognition (the target object is described by a formal model of its structure). We suggest a method of constructing recognition systems which combine structured recognition with machine learning. The approach is demonstrated through designing and implementing a system for locating separate building in aerial photographs. We discuss further possibilities of using formal property specification languages for fast readjustment of recognition systems.

Key words: formal models, syntactic pattern recognition, neural network classifiers, detectors for geometric primitives

DOI: 10.1134/S0235009218030125

Cite: Teplyakov L. M., Grigoryev A. S., Kunina I. A., Gladilin S. A. Aprobatsiya podkhoda k raspoznavaniyu obektov, zadannykh formalnym opisaniem nablyudaemykh svoistv, na primere zadachi poiska obektov na aerofotosnimkakh [A method of object recognition based on formal properties specification applied to locating objects in aerial photographs]. Sensornye sistemy [Sensory systems]. 2018. V. 32(3). P. 260-268 (in Russian). doi: 10.1134/S0235009218030125

References:

  • Gladilin S.A., Kotov A.A., Nikolaev D.P., Usilin S.A. Construction of robust features for detection and classification of objects without characteristic brightness contrasts. Informachionnye technologii I vychislitelnye sistemy [Journal of Information Technologies and Computing Systems]. 2014. V. 6. № 1. P. 53–60 (in Russian).
  • Grigoryev A., Gladilin S., Khanipov T., Koptelov I., Bocharov D., Matsnev D. Architecture of a system for computer vision-based vehicle detection and classification under natural conditions. Sensornye systems [Sensory systems]. 2017. V. 31. № 1. P. 72–84 (in Russian).
  • Ivanova A.A., Fedorenko F.A., Konovalenko I.A. Podgotovka obuchajushhej vyborki dlja sozdanija nejrosetevyh proektivno-invariantnyh deskriptorov kljuchevyh tochek [Training data preparation for creating neural network projectively invariant key point descriptors] Informacionnye tehnologii i sistemy [Information technologies and systems]. 2016. P. 303–308 (in Russian).
  • Kornilov F.A., Kostousov K.V., Perevalov D.S. Primenenie algoritma Violy-Dzhonsa s dvuhtochechnymi priznakami dlja poiska antropogennyh ob#ektov v trave [Application of the Viola-Jones algorithm with two-point signs to search for anthropogenic objects in the grass]. Mehanika, upravlenie i informatika [Technical vision in control systems]. 2012. P. 214–216 (in Russian).
  • Polyakov I.V., Kuznetsova E.G., Usilin S.A., Nikolaev D.P. Training optimal Viola-Jones detectors using greedy algorithms for selecting control parameters with intermediate validation on each level. Sensornye systemy [Sensory systems]. 2016. V. 30. № 3. P. 241–248 (in Russian).
  • Russian Foundation for Advanced Research Projects in the Defense Industry. Otkrytyj konkurs na luchshee reshenie v oblasti sozdanija intellektual’nyh tehnologij deshifrirovanija vidovoj ajerokosmicheskoj informacii [Open competition for the best solution in the field of creating intelligent technologies for deciphering species aerospace information]. 2016. URL: http://fpi.gov.ru/activities/konkurs/spacemap (in Russian).
  • Fu K.S. Syntactic methods in pattern recognition. 1974. V. 112.
  • Albus J.E., Anderson R.H., Brayer J.M., DeMori R., Feng H.Y., Horowitz S.L., Vamos T. Syntactic pattern recognition, applications. Springer Science & Business Media. 2012. V. 14.
  • Cheng G., Han J. A survey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing. 2016. V. 117. P. 11–28. 10.1016/j.isprsjprs. 2016.03.014.
  • Dong Y., Du B., Zhang L. Target Detection Based on Random Forest Metric Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2015. V. 8. № 4. P. 1830–1838. 10.1109/JSTARS.2015.2416255.
  • Fedorenko F.A., Ivanova A.A., Limonova E.E., Konovalenko I. A. Trainable Siamese keypoint descriptors for real-time applications. 2016 International Conference on Robotics and Machine Vision. 2017. V. 10253. P. 1025306. 10.1117/12.2266351.
  • Fouhey D.F., Gupta A., Hebert M. Data-driven 3D primitives for single image understanding. Proceedings of the IEEE International Conference on Computer Vision. 2013. P. 3392–3399. 10.1109/ICCV.2013.421.
  • Harris C., Stephens M. A combined corner and edge detector. Alvey vision conference. 1988. V. 15. № 50. P. 10–5244.
  • Jiang H., Learned-Miller E. Face detection with the faster R-CNN. Automatic Face & Gesture Recognition. 2017. P. 650–657. 10.1109/FG.2017.82.
  • Kuznetsova E., Shvets E., Nikolaev D. Viola-Jones based hybrid framework for real-time object detection in multispectral images. Proceedings SPIE. Eighth International Conference on Machine Vision (ICMV 2015). 2015. V. 9875. P. 98750N. 10.1117/12.2228707.
  • Leninisha S., Vani K. Water flow based geometric active deformable model for road network. SPRS Journal of Photogrammetry and Remote Sensing. 2015. V. 102. P. 140–147. 10.1016/j.isprsjprs.2015.01.013.
  • Lowe D.G. Object recognition from local scale-invariant features. Computer vision, 1999. The proceedings of the seventh IEEE international conference on. 1999. V. 2. P. 1150–1157. 10.1109/ICCV.1999.790410.
  • Li Y., Wang S., Tian Q., Ding X. Feature representation for statistical-learning-based object detection: A review. Pattern Recognition. 2015. V. 48. № 11. P. 3542–3559. 10.1016/j.patcog.2015.04.018.
  • Liu G., Sun X., Fu K., Wang H. Interactive geospatial object extraction in high resolution remote sensing images using shape-based global minimization active contour model. Pattern Recognition. 2013. V. 34 № 10. P. 1186–1195. 10.1016/j.patrec.2013.03.031.
  • Malek S., Bazi Y., Alajlan N., AlHichri H., Melgani F. Efficient framework for palm tree detection in UAV images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2014. V. 7. № 12. P. 4692–4703. 10.1109/JSTARS.2014.2331425.
  • Minkina A., Nikolaev D., Usilin S., Kozyrev V. Generalization of the Viola-Jones method as a decision tree of strong classifiers for real-time object recognition in video stream. Proceedings SPIE. Seventh International Conference on Machine Vision. 2015. V. 9445. 944517. P. 1–5. 10.1117/12.2180941.
  • Pavlidis T. Structural pattern recognition. Springer. 2013. 304 p.
  • Prun V., Bocharov D., Koptelov I., Sholomov D., Postnikov V. Geometric filtration of classification-based object detectors in realtime road scene recognition systems. Proceedings SPIE. Eighth International Conference on Machine Vision (ICMV 2015). 2015. V. 9875. P. 98750O. 10.1117/12.2228709.
  • Stankov K., He D.-C. Detection of buildings in multispectral very high spatial resolution images using the percentage occupancy hit-or-miss transform. EEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2014. V. 7. № 10. P. 4069–4080. 10.1109/JSTARS.2014.2308301.
  • Villamizar M., Andrade-Cetto J., Sanfeliu A., Moreno-Noguer F. Boosted Random Ferns for Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018. V. 40. № 2. P. 272–288. 10.1109/TPAMI.2017.2676778.
  • Viola P., Jones M.J. Robust real-time face detection. International journal of computer vision. 2004. V. 57. № 2. P. 137–154. 10.1023/B:VISI.0000013087.49260.fb.
  • Zhang D., Han J., Cheng G., Liu Z., Bu S., Guo L. Weakly supervised learning for target detection in remote sensing images. IEEE Geoscience and Remote Sensing Letters. 2015. V. 12. № 4. P. 701–705. 10.1109/LGRS.2014.2358994
  • Zheng Z., Zhou G., Wang Y., Liu Y., Li X., Wang X., Jiang L. A novel vehicle detection method with high resolution highway aerial image. EEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2013. V. 6. № 6. P. 2338–2343. 10.1109/JSTARS.2013.2266131.