• 2022 (Vol.36)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Localization of a stereo camera equipped robot using poles with known location as landmarks

© 2017 I. V. Polyakov, A. S. Grigoryev

Institute for Information Transmission Problems RAS 127051 Moscow, Bolshoi Karetny per., 19

Received 10 Oct 2016

Visual localization is gaining wide adoption in robotics research. In localizing a robot within known environment one can simplify the task by using arti cial landmarks with known xed location. In this work, we use black and white distinctively striped poles as such landmarks. The key point about landmarks of this kind is that their orientation cannot be visually discerned. We propose a localization approach for such landmarks with unknowable orientation that takes into account the nite precision of computer vision systems, particularly errors in distance computation from wide-angle binocular images. The statistically optimal estimates are obtained using grid-based Bayesian methods, which allows plugging in arbitrary error distributions.

Key words: localization, position estimation, unmanned ground vehicles, computer vision, landmark recognition, grid-based Bayesian estimation

Cite: Polyakov I. V., Grigoryev A. S. Orientatsiya v prostranstve osnashchennogo stereoparoi robota po stolbam s izvestnym raspolozheniem [Localization of a stereo camera equipped robot using poles with known location as landmarks]. Sensornye sistemy [Sensory systems]. 2017. V. 31(1). P. 85-91 (in Russian).


  • Efimov N.V. Kratkiy kurs analiticheskoy geometrii (10-e izd.) M.: Nauka, 1967. 272 p. [in Russian]
  • Shcherbakov A.P. A two-camera based algorithm for 3D reconstruction of a visu- al scene. Probabilistic approach. 2009. J. Comp. Sys. Sci. Int. 2009. V. 48. No 1. С. 131–138 [in Russian]
  • Chuang J.C., Hu Y.C., Ko H.J. A novel secret sharing technique using QR code // Int. J. Image Processing. 2010. V. 4. No 5. P. 468–475.
  • Fuentes-Pacheco J., Ruiz-Ascencio J., Rendón-Mancha J. Vi- sual simultaneous localization and mapping: a survey // Arti cial Intelligence Review. 2012. P. 1–27.
  • Kurth D. Range-Only Robot Localization and SLAM with Radio. Tech. report CMU-RI-TR-04-29. Carnegie Mel- lon Univ., 2004. 60 p.
  • Narayanan A.S. QR codes and security solutions //Int. J. Comp. Sci. Telecommunicat. 2012. V. 3. No 7. С. 69–72.
  • Perret B., Lefevre S., Collet C. A robust hit-or-miss transform for template matching applied to very noisy astronomical images // Pattern Recogn. 2009. V. 42. No 11. P. 2470–2480.
  • Rivard F., Bisson J., Michaud F., Letourneau D. Ultrasonic relative poisoning for multirobot systems // Proc. Int. Conf. Robot. Automat. 2008. P. 323–328.
  • Se S., Lowe D., Little J. Local and global localization for mobile robots using visual landmarks // Proc. Int. Conf. Intelligent Robots and Systems. 2001. P. 414–420.
  • Viola P., Jones M. Robust real-time face detection // Int. J. Comp. Vision. 2004. V. 57. No 2. P. 137–154.
  • Zhou G., Fang L., Tang K., Zhang H., Wang K., Yang K. Guidance: A visual sensing platform for robotic applications // Conf. Comp. Vis. Pattern. Recogn. Workshops (CVPRW). 2015. P. 9–14.