In this work we explore the architecture of a system for moving object detection and classi cation under outdoor
observation conditions with xed scene geometry using the example of the vision-based automatic vehicle classi er (AVC).
We consider the evolutionary development of the system from the prototype to a mature product achieving high classi
cation quality under wide range of natural conditions. Based on the analysis of the AVC, we propose a model software
architecture applicable in development of a wide range of industrial computer vision systems that allows to gradually
increase the complexity and functionality of the system on the way from an early prototype to a mature product.
Key words:
software architecture, computer vision, moving object classification, multicriterial classification, vehicle
classification, axle counting, Viola-Jones detector, pattern recognition
Cite:
Grigoryev A., Gladilin S., Khanipov T., Koptelov I., Bocharov D., Matsnev D.
Arkhitektura sistemy detektsii i klassifikatsii avtomobilei sredstvami tekhnicheskogo zreniya v estestvennykh usloviyakh
[Architecture of a system for computer vision-based vehicle detection and classification under natural conditions].
Sensornye sistemy [Sensory systems].
2017.
V. 31(1).
P. 72-84 (in Russian).
References:
- Gladilin S., Grigoryev A., Kotov A., Nikolaev D. Viola-Jones algorithm implementation in OpenCL // Trudy ISA RAN. 2014а. V. 64. No 4. P. 97–105 [in Russian]
- Gladilin S.A., Kotov A.A., Nikolaev D.P., Usilin S.A. Postroenie ustoychivykh priznakov detekcii i klassifikacii objektov, ne obladajushchikh kharakternymi yarkostnymi kontrastami // Informacionnye tekhnologii i vychislitel’nye sistemy. 2014б. No 1. P. 61–72 [in Russian].
- Kuroptev A.V., Nikolaev D.P., Postnikov V.V. Tochnaya lokalizaciya opornykh reshetok poley zapolneniya v anketakh metodami dinamicheskogo programmirovaniya I morfologicheskoy ltracii // Trudy ISA RAN. 2013. V. 63 No 3. P. 111–116 [in Russian].
- Maljugina O., Nikolaev D. Kriterii ocenki kachestva dlja potokovoj sistemy obnaruzhen a i klassi kacii // 39th Conf. School Informat. Technol. Syst. 2015. P. 414–427 [in Russian].
- Bocharov D., Sidorchuk D., Konovalenko I., Koptelov I. Vehicle passes detector based on multi-sensor analysis // Proc. SPIE. 7th Int. Conf. Machine Vision. 2015. V. 9445, 944510. P. 1–5.
- Ejiri M. Machine vision in early days: Japan’s pioneering contributions // Asian Conf. Comp. Vision. 2007. P. 35–53.
- Grigoryev A., Bocharov D., Terekhin A., Nikolaev D. Vision-based vehicle wheel detector and axle counter // Proc. 29th Europ. Conf. Model. Simulat. 2015. P. 521– 526.
- Grigoryev A., Khanipov T., Koptelov I., Bocharov D., Postnikov V., Nikolaev D. Building a robust vehicle detection and classi cation module // Proc. SPIE. 8th Int. Conf. Machine Vision. 2015. V. 9875. 98751J. P. 1–7.
- Khanipov T., Koptelov I., Grigoryev A., Kuznetsova E., Nikolaev D. Vision-based industrial automatic vehicle classi er // Proc. SPIE. 7th Int. Conf. Machine Vision. 2015. V. 9445, 944511. P. 1–5.
- Kuznetsova E., Shvets E., Nikolaev D. Viola-Jones based hybrid framework for real-time object detection in multispectral images // Proc. SPIE. 8th Int. Conf. Machine Vision. 2015. V. 9875. 98750N. P. 1–6.
- Levashov A., Yurin D. Accurate and reliable framework for fast parametric curves detection // 8th Open GermanRussian Workshop Pattern Recogn. Image Understand. 2011. P. 178–181.
- Minkina A., Nikolaev D., Usilin S., Kozyrev V. Generalization of the Viola-Jones method as a decision tree of strong classi ers for real-time object recognition in video stream // Proc. SPIE. 7th Int. Conf. Machine Vision. 2015. V. 9445, 944517. P. 1–5.
- Nikolaev D., Karpenko S., Nikolaev I., Nikolaev P. Hough transform: Understimated tool in the computer vision eld // Proc. 22th Europ. Conf. Model. Simulat. 2008. P. 238–246.
- Taylor J. Smooth transition exponential smoothing // J. Forecasting. 2004. V. 23. No 6. P. 385–404.
- Viola P., Jones M. Robust real-time face detection // Int. J. Comp. Vision. 2004. V. 57. No 2. P. 137–154.