• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

The structural-functional organization of mammalian auditory cortex as the basis of acoustic information cortical processing. The structural organization

© 2016 G. D. Khorunzhii, M. A. Egorova

I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS 194223 St. Petersburg, Torez, 44

Received 25 Apr 2016

The basic morphological aspects of auditory cortex organization in different orders of eutherian mammals are considered in present review. The modern data describing a partition of mammalian auditory cortex into subfields are presented. The detailed observation of structural organization of primary auditory cortex is given as well as the review of present morphological data about the secondary auditory areas. An individual chapter of present paper describes the system of auditory cortical projections. The data are considered from the aspect of possible homologies existing between the auditory cortices of different mammalian species.

Key words: auditory cortex, primary and secondary auditory cortical fields, auditory cortical projections

Cite: Khorunzhii G. D., Egorova M. A. Strukturno-funktsionalnaya organizatsiya slukhovoi kory mlekopitayushchikh kak osnova kortikalnoi obrabotki akusticheskoi informatsii. osobennosti strukturnoi organizatsii [The structural-functional organization of mammalian auditory cortex as the basis of acoustic information cortical processing. the structural organization]. Sensornye sistemy [Sensory systems]. 2016. V. 30(3). P. 181-200 (in Russian).

References:

  • Airapetianz E.S., Konstantinov A.I. Echolocation in nature. Leningrad. Nauka, 1970. 375 p. [in Russian].
  • Airapetianz E.S., Konstantinov A.I. Echolocation in nature. Leningrad. Nauka, 1974. 512 p. [in Russian].
  • Burikova N.V. Cytoarchitectonics and afferent projections of several centers of the auditory system in bats. PhD thesis. Leningrad. 1974 [in Russian].
  • Vartanyan I.A., Shmigidina G.N. Neurobiological basis for acoustical communication. Comparative physiological review of structures and mechanisms // J. Evol. Biochem. Physiol. 1995. V. 31 (5–6). P. 677–684 [in Russian].
  • Vartanyan I.A., Shmigidina G.N. Structural and functional organization of the auditory cortex in rats // J. Evol. Biochem. Physiol. 1991. V. 27 (3). P. 344–350 [in Russian].
  • Vartanian I.A. Slukhovoi analiz slozhnykh zvukov (Auditory Analysis of Complex Sounds). Leningrad, Nauka. 1978. 152 p. [in Russian].
  • Vartanyan I.A., Shmigidina G.N. Impulse neuronal activity in the auditory cortex of rats during the effect of sound signals // J. Evol. Biochem. Physiol. 1972. V . 8 (1). P . 67–77 [in Russian].
  • Egorova M.A. Frequency Selectivity of Neurons of the Primary Auditory Field (A1) and Anterior Auditory Field (AAF) in the Auditory Cortex of the House Mouse (Mus musculus) // J. Evol. Biochem. Physiol. 2005. V. 41 (4). P. 379–382 [in Russian].
  • Konstantinov A.I., Makarov A.K., Movchan E.V. Sensory system for echolocation in horseshoe bats. Moscow. Russian Academy of Sciences, 1988. 200 p. [in Russian].
  • Malinina E.S. Processing of spectral localization informative changes in sound signals by neurons of inferior colliculus and auditory cortex of the house mouse Mus musculus // J. Evol. Biochem. Physiol. 2006. V. 42 (5). P. 479–491 [in Russian].
  • Malinina E.S. Responses of Mouse Auditory Cortex Neurons to Signals with Regular Varying Spectrum // Sensory systems. 2005. V. 19 (3). P. 240–244 [in Russian].
  • Nikitenko M.F. The evolution and the brain. Minsk. 1969. 340 p. [in Russian].
  • Serkov F. N. Electrophysiology of Higher levels of the Auditory System. Kiev. Naukova Dumka, 1977. 214 p. [in Russian].
  • Serkov F.N. Cortical inhibition. Kiev. Naukova Dumka, 1986. 246 p. [in Russian].
  • Shmigidina G.N. Direct connections of the auditory and limbic cortex in rats // J. Evol. Biochem. Physiol. 1993. V. 29 (4). P. 358–363 [in Russian].
  • Aitkin L.M., Irvine D.R.F., Nelson J.E., Merzenich M.M., Clarey J.C. Frequency representation in the auditory midbrain and forebrain of a marsupial, the northern native cat (Dasyurus hallucatus) // Brain. Behav. Evol. 1986. V. 29. P. 17–28.
  • Aitkin L.M., Kudo M., Irvine D.R.F. Connections of the primary auditory cortex in the common marmoset, Callithrix jacchus jacchus // J. Comp. Neurol. 1988. V. 269 (2). P. 235–248.
  • Andersen R.A., Knight P.L., Merzenich M.M. The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory eld (AAF) in the cat: evidence for two largely segregated systems of connections // J. Comp. Neurol. 1980. V. 194. P. 663–701.
  • Bajo V.M., Moore D.R. Descending projections from the auditory cortex to the inferior colliculus in the gerbil, Meriones unguiculatus // J. Comp. Neurol. 2005. V. 486. P.101–116.
  • Batzri-Izraeli R., Kelly J.B., Glendenning K.K., Masterton R.B., Wollberg Z. Auditory cortex of the long-eared hedgehog (Hemiechinus auritus): I. Boundaries and frequency representation // Brain Behav. Evol. 1990. V.36. P. 237–248.
  • Bendor D., Wang X. Neural response properties of primary, rostral, and rostrotemporal core elds in the auditory cortex of marmoset monkeys // J. Neurophysiol. 2008. V. 100 (2). P. 888–906.
  • Bizley J.K., Bajo V .M., Nodal F .R., King A.J. Corticocortical connectivity within ferret auditory cortex // J. Comp. Neurol. 2015. V. 523(15). P. 2187–2210.
  • Bizley J.K., Nodal F.R., Nelken I., King A.J. Functional organization of ferret auditory cortex // Cereb. Cortex. 2005. V. 15. P. 1637–1653.
  • Bremer F., Dow R. S. The cerebral acoustic area of the cat. A combined oscillographic and cytoarchitectonic study // J. Neurophysiol. 1939. V. 2. P. 308–318.
  • Brugge J.F. Auditory cortical areas in primates // Cortical sensory organization. Humana Press. 1982. P. 59–70.
  • Brugge J.F., Reale R.A. Auditory Cortex // Cerebral cortex. New York: Plenum Press, 1985. P. 229–271.
  • Budinger E., Heil P., Scheich H. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures // Europ. J. Neurosci. 2000. V. 12 (7). P. 2452–2474.
  • Campbell A.W. Histological studies on the localization of cerebral function. Cambridge: Cambridge Univ. Press, 1905. 174 p.
  • Catania K.C. Evolution of sensory specializations in insectivores // The Anatom. Rec. P. A: Discoveries in Molecular, Cellular, and Evolutionary Biology. 2005. V. 287(1). P. 1038–1050.
  • Catania K.C., Collins C.E., Kaas J.H. Organization of sensory cortex in the east African hedgehog (Atelerix albiventris) // J. Comp. Neurol. 2000. V. 421. P. 256– 274.
  • Caviness V.S. Architectonic map of neocortex of the normal mouse // J. Comp. Neurol. 1975. V . 164. P . 247– 263.
  • Christianson G.B., Sahani M., Linden J.F. Depth-dependent temporal response properties in core auditory cortex // J. Neurosci. 2011. V. 31. P. 12837–12848.
  • Conley M., Kupersmith A.C., Diamond I.T. The organization of projections from subdivisions of the auditory cortex and thalamus to the auditory sector of the thalamic reticular nucleus in Galago // Europ. J. Neurosci. 1991. V. 3 (11). P. 1089–1103.
  • De La Mothe L.A., Blumell S., Kajikawa Y., Hackett T.A. Thalamic connections of the auditory cortex in marmoset monkeys: core and medial belt regions // J. Comp. Neurol. 2006. V. 496 (1). P. 72–96.
  • De la Mothe L.A., Blumell S., Kajikawa Y., Hackett T.A. Thalamic connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions // Anatom. Rec. 2012. V. 295 (5). P. 822–836.
  • Diamond I.T., Jones E.G., Powell T.P.S. The association connections of the auditory cortex of the cat // Brain Res. 1968. V. 11. P. 560–579.
  • Diamond I.T., Jones E.G., Powell T.P.S. The projection of the auditory cortex upon the diencephalon and brain stem of the cat // Brain Res. 1969. V. 15. P. 305–340.
  • Downman C.B., Woolsey C.N., Lende R.A. Auditory areas I, II and Ep: cochlear representation, afferent paths and interconnections // Johns Hopk. Hosp. Bull. 1960. V. 106. P. 127–142.
  • von Economo C., Koskinas G. N. The cytoarchitectonics of the human cerebral cortex. London: Oxford University Press. 1929.
  • Ehret G. Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls // Nature. 1987. V. 325. P. 249–251.
  • Eiermann A., Esser K.-H. Tonotopic organization and parcellation of auditory cortex in the FM-bat Carollia perspicillata // Göttingen Neurobiol. Report. Proc. 24th Göttingen Neurobiol. Conf. Stuttgart, Thieme Verlag, 1996. V. 2. P. 237.
  • Esser K.-H., Eiermann A. Tonotopic organization and parcellation of auditory cortex in the FM-bat Carollia perspicillata // Eur. J. Neurosci. 1999. V. 11. P. 3669–3682.
  • Esser K.-H., Kiefer R. Detection of frequency modulation in the FM-bat Phyllostomus discolor // J. Comp. Physiol. A. 1996. V. 178. P. 787–796.
  • Esser K.H., Condon C.J., Suga N., Kanwal J.S. Syntax processing by auditory cortical neurons in the FM-FM area of the mustached bat Pteronotus parnellii // Proc. Nat. Acad. Sci. USA. 1997. V. 94. P. 14019–14024.
  • Feliciano M., Potashner S.J. Evidence for a glutamatergic pathway from the guinea pig auditory cortex to the inferior colliculus // J. Neurochem. 1995. V. 65. P. 1348– 1357.
  • Feliciano M., Saldana E., Mugnaini E. Direct projections from the rat primary auditory neocortex to nucleus sagulum, paralemniscal regions, superior olivary complex and cochlear nuclei // Aud. Neurosci. 1995. V. 1. P. 287–308.
  • Fitzpatrick D.C., Kanwal J.S., Butman J.A., Suga N. Combination-sensitive neurons in the primary auditory cortex of the mustached bat // J. Neurosci. 1993. V. 13 (3). P. 931–940.
  • Fitzpatrick D.C., Olsen J.F., Suga N. Connections among functional areas in the mustached bat auditory cortex // J. Comp. Neurol. 1998. V. 391 (3). P. 366–396.
  • Fitzpatrick K.A., Imig T.J. Projections of auditory cortex upon the thalamus and midbrain in the owl monkey // J. Comp. Neurol. 1978. V. 111. P. 537–556.
  • Fitzpatrick K.A., Imig T.J., Reale R.A. Thalamic projections to the posterior auditory eld in the cat // Soc. Neurosci. Abstr. 1977. V. 3. P. 6–7.
  • Galambos R., Grif n D.R. Obstacle avoidance by ying bats: the cries of bats // J. Exp. Zool. 1942. V. 89 (3). P. 475–490.
  • Galambos R., Grif n D.R. The supersonic cries of bats // Anatomical Record. 1940. V. 78. P. 95–96.
  • Gates G.R., Aitkin L.M. Auditory cortex in the marsupial possum, Trichosurus vulpecula // Hear. Res. 1982. V. 7. P. 1–11.
  • Glaser E.M., Van der Loos H., Gissler M. Tangential orientation and spatial order in dendrites of cat auditory cortex: a computer microscope study of Golgi-impregnated material // Exp. Brain Res. 1979. V. 36. P. 411– 431.
  • Goldberg J., Diamond I., Neff W. Auditory discrimination after ablation of temporal and insular cortex in cat // Fed. Proc.1957. V. 16. P. 204–205.
  • Graybiel A.M. Studies on the anatomical organization of posterior assotiation cortex // The Neurosciences Third Study Programm. Cambridge: The MIT Press, 1974. P. 205–214.
  • Graybiel A.M. The thalamo-cortical projection of the socalled posterior nuclear group: A study with anterograde degeneration methods in the cat // Brain Res. 1973. V. 49. P. 229–244.
  • Haase H., Ehret G. Lateralization of sound perception in the brain of the mouse (Mus musculus) // PerceptionCognition: Proc. 18th Göttingen Neurobiol. Conf. Stuttgart, Thieme Verlag. 1990. P. 150–151.
  • Hackett T.A. Anatomic organization of the auditory cortex // Handb. Clin. Neurol. 2015. V. 129. P. 27–53.
  • Hackett T.A. Anatomical organization of the auditory cortex //J. Am. Acad. Audiol. 2008. V. 19 (10). P. 774–779.
  • Hackett T.A., Preuss T.M., Kaas J.H. Architectonic identi cation of the core region in auditory cortex of macaques, chimpanzees, and humans // J. Comp. Neurol. 2001. V. 441 (3). P. 197–222.
  • Hackett T.A., Stepniewska I., Kaas J.H. Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys // J. Comp. Neurol. 1998. V. 394 (4). P. 475–495.
  • Hall A.J. Hierarchical Organization in Auditory Cortex of the Cat Using High-Field Functional Magnetic Resonance Imaging. PhD thesis. Ontario. Canada. 2015.
  • Harel N., Mori N., Sawada S., Mount R.J., Harrison R.V.
  • Three distinct auditory areas of cortex (AI, AII, and AAF) de ned by optical imaging of intrinsic signals // Neuroimage. 2000. V.11. P. 302–312.
  • Harrison R.V., Kakigi A., Hirakawa H., Harel N., Mount R.J. Tonotopic mapping in auditory cortex of the chinchilla // Hear. Res. 1996. V. 100(1). P. 157–163.
  • Heath C.J., Jones E.G. An experimental study of ascending connections from the posterior group of thalamic nuclei in the cat // J. Comp. Neurol. 1971. V. 141. P. 397–426.
  • Hellweg F .C., Koch R., V ollrath M. Representation of the cochlea in the neocortex of guinea pigs // Exp. Brain Res. 1977. V. 29. P. 467–474.
  • Hind Jr. J.E., Benjamin R.M., Woolsey C.N. Auditory cortex of the squirrel monkey (Saimiri sciureus) // Fed. Proc. 1958. V. 17. P. 71.
  • Hoffmann S., Baier L., Borina F., Schuller G., Wiegrebe L., Firzlaff U. Psychophysical and neurophysiological hearing thresholds in the bat Phyllostomus discolor // J. Comp. Physiol. A. 2008. V. 194 (1). P. 39–47.
  • Hofstetter K.M., Ehret G. The auditory cortex of the mouse: connections of the ultrasonic eld // J. Comp. Neurol. 1992. V. 323 (3). P. 370–386.
  • Horikawa J., Hess A., Nasu M., Hosokawa Y., Scheich H., Taniguchi I. Optical imaging of neuronal activity in multiple auditory cortical elds of guinea pigs // Neuroreport. 2001. V. 12. P. 3335–3339.
  • Horikawa J., Hosokawa Y., Nasu M., Taniguchi I. Optical study of spatiotemporal inhibition evoked by two-tone stimuli in the guinea pig auditory cortex // J. Comp. Physiol. A. 1997. V. 181. P. 677–684.
  • Hosokawa Y., Sugimoto S., Kubota M., Taniguchi I., Horikawa J. Optical imaging of binaural interaction in multiple elds of the guinea pig auditory cortex // Neuroreport. 2004. V. 15. P. 1093–1097.
  • Imaizumi K., Lee C.C., Linden J.F., Winer J.A., Schreiner C.E. The anterior eld of auditory cortex // The Auditory Cortex. Mahwah – London: Lawrence Erlbaum Associates Inc. 2005. P. 95–110.
  • Imaizumi K., Priebe N.J., Crum P.A., Bedenbaugh P.H., Cheung S.W., Schreiner C.E. Modular functional organization of cat anterior auditory eld // J. Neurophysiol. 2004. V. 92. P. 444–457.
  • Imig T.J., Adrian H.O. Binaural columns in the primary eld (AI) of cat auditory cortex // Brain Res. 1977. V. 138. P. 241–257.
  • Imig T. J., Morel A. Organization of the thalamocortical auditory system in the cat //Ann. Rev. Neurosci. 1983. V. 6 (1). P. 95–120.
  • Imig T.J., Brugge J.F. Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat // J. Comp. Neurol. 1978. V. 182. P. 637–660.
  • Imig T.J., Morel A. Tonotopic organization in ventral nucleus of medial geniculate body in the cat // J. Neurophysiol. 1985. V. 53. P. 309–340.
  • Imig T.J., Reale R.A. Ipsilateral cortico-cortical projections related to binaural columns in cat primary auditory cortex // J. Comp. Neurol. 1981. V. 203. P. 1–14.
  • Imig T.J., Ruggero M.A., Kitzes L.M., Javel E., Brugge J.F. Organization of auditory cortex in the owl monkey (Aotus trivirgatus) //J. Comp. Neurol. 1977. V. 171 (1). P. 111–128.
  • Kaas J.H., Hackett T A. Subdivisions and connections of auditory cortex in primates: a working model //Auditory cortex. A synthesis of human and animal research. 2005. P. 7–26.
  • Kaas J.H., Hackett T.A. Subdivisions of auditory cortex and processing streams in primates // Proc. Nat. Acad. Sci. 2000. V. 97 (22). P. 11793–11799.
  • Kaas J.H., Hall W.C., Diamond I.T. Visual cortex of the grey squirrel (Sciureus carolinensis): Architectonic subdivisions and connections from visual thalamus // J. Comp. Neurol. 1972. V. 145. P. 273–306.
  • Kanwal J.S., Ehret G. Communication sounds and their cortical representation // The Auditory Cortex. New York: Springer. 2010. P. 343–368.
  • Kanwal J.S., Fitzpatrick D.C., Suga N. Facilitatory and inhibitory frequency tuning of combination-sensitive neurons in the primary auditory cortex of mustached bats // J. Neurophysiol. 1999. V. 82. P. 2327–2345.
  • Kawamura K. Corticocortical ber connections of the cat cerebrum. I. The temporal region // Brain Res. 1973. V. 51. P. 1–21.
  • Kelly J.B., Judge P.W. Binaural organization of primary auditory cortex in the ferret (Mustela putorius) // J. Neurophysiol. 1994. V. 71. P. 904–913.
  • Kelly J.B., Judge P.W., Phillips D.P. Representation of the cochlea in primary auditory cortex of the ferret (Mustela putorius) // Hear. Res. 1986. V. 24 (2). P. 111–115.
  • Knight P.L. Representation of the cochlea within the anterior auditory eld (AAF) of the cat // Brain Res. 1977. V. 130. P. 447–467.
  • Kornmüller A. E. Die bioelektrischen Erscheinungen der Hirnrindenfelder: mit allgemeineren Ergebnissen zur Physiologie und Pathophysiologie des zentralnervösen Griseum. Georg Thieme Verlag, 1937.
  • Kosaki H., Hashikawa T., He J., Jones E.G. Tonotopic organization of auditory cortical elds delineated by parvalbumin immunoreactivity in macaque monkeys // J. Comp. Neurol. 1997. V. 386. P. 304–316.
  • Kraus N., Disterhoft J.F. Response plasticity of single neurons in rabbit auditory association cortex during tone-signalled learning // Brain Res. 1982. V. 246 (2). P. 205–215.
  • Krieg W.J.S. Connections of cerebral cortex. I. The albino rat. A. Topography of the cortical areas // J. Comp. Neurol. 1946. V. 84. P. 221–275.
  • Lee C.C., Winer J.A. Connections of cat auditory cortex: III. Corticocortical system // J. Comp. Neurol. 2008. V. 507 (6). P. 1920–1943.
  • Lee C.C., Imaizumi K., Schreiner C.E., Winer J.A. Concurrent tonotopic processing streams in auditory cortex // Cerebral Cortex. 2004. V. 14. P. 441–451.
  • Lim H.H., Anderson D.J. Antidromic activation reveals tonotopically organized projections from primary auditory cortex to the central nucleus of the inferior colliculus in guinea pig // J. Neurophysiol. 2007. V. 97. P. 1413–1427.
  • Linden J.F., Liu R.C., Sahani M., Schreiner C.E. Spectrotemporal Structure of Receptive Fields in Areas AI and AAF of Mouse Auditory Cortex // J. Neurophysiol. 2003. V. 90. P. 2660–2675.
  • Lindquist D.H., Jarrard L.E., Brown T.H. Perirhinal cortex supports delay fear conditioning to rat ultrasonic social signals // J. Neurosci. 2004. V. 24. P. 3610–3617.
  • Loftus W.C., Sutter M.L. Spectrotemporal organization of excitatory and inhibitory receptive elds of cat posterior auditory eld neurons // J. Neurophysiol. 2001. V. 86. P. 475–491.
  • Lorente de Nó R. Architectonics and structure of the cerebral cortex // Physiology of the Nervous System / Ed. J. F. Fulton. New York: Oxford University Press. 1938. P. 291–330.
  • Luethke L.E., Krubitzer L.A., Kaas J.H. Connections of primary auditory cortex in the New World monkey, Saguinus // J. Comp. Neurol. 1989. V. 285 (4). P. 487– 513.
  • Luethke L.E., Krubitzer L.A., Kaas J.H. Cortical connections of electrophysiologically and architectonically de ned subdivisions of auditory cortex in squirrels // J. Comp. Neurol. 1988. V. 268 (2). P. 181–203.
  • Ma X., Suga N.J. Lateral inhibition for center-surround reorganization of the frequency map of bat auditory cortex // J. Neurophysiol. 2004. V. 92. P. 3192–3199.
  • Ma X., Suga N. Multiparametric corticofugal modulation of collicular duration-tuned neurons: modulation in the amplitude domain // J. Neurophysiol. 2007. V. 97 (5). P. 3722–3730.
  • Ma X., Suga N. Speci c and nonspeci c plasticity of the primary auditory cortex elicited by thalamic auditory neurons // J. Neurosci. 2009. V. 29 (15). P. 4888– 4896.
  • McMullen N.T., Glaser E.M. Tonotopic organization of rabbit auditory cortex // Exp. Neurol. 1982. V. 75 (1). P. 208–220.
  • Merzenich M.M., Brugge J.F. Representation of the cochlear partition on the superior temporal plane of the macaque monkey // Brain Res. 1973. V. 50 (2). P. 275– 296.
  • Merzenich M.M., Colwell S.A., Andersen R.A. Auditory forebrain organization: Thalamocortical and corticothalamic connections in the cat // Cortical Sensory Organization. Clifton, New Jersey: Humana Press, 1982. P. 43–57.
  • Merzenich M.M., Knight P.L., Roth G.L. Representation of the cochlea within primary auditory cortex in the cat // J. Neurophysiol. 1975. V. 38. P. 231–249.
  • Merzenich M.M., Kaas J.H., Roth G.L. Auditory cortex in the grey squirrel: tonotopic organization and architectonic elds // J. Comp. Neurol. 1976. V. 166. P. 387– 401.
  • Merzenich M.M., Reid M.D. Representation of the cochlea within the inferior colliculus of the cat // Brain Res. 1974. V. 77. P. 397–415.
  • Middlebrooks J.C., Zook J.M. Intrinsic organization of the cat’s medial geniculate body de ned by projections to binaural response-speci c bands in the primary auditory cortex // J. Neurosci. 1983. V. 3. P. 203–224.
  • Miller D.J., Lackey E.P., Hackett T.A., Kaas J.H. Development of myelination and cholinergic innervation in the central auditory system of a prosimian primate (Otolemur garnetti) // J. Comp. Neurol. 2013. V. 521 (16). P. 3804–3816.
  • Morel A., Garraghty P.E., Kaas J.H. Tonotopic organization, architectonic elds, and connections of auditory cortex in macaque monkeys // J. Comp. Neurol. 1993. V. 335 (3). P. 437–459.
  • Morel A., Imig T.J. Neurons in the tonotopic thalamus of the cat are topographically organized with respect to their target elds in auditory cortex // Soc. Neurosci. Abstr. 1984. V. 10. P. 244–245.
  • Morel A., Imig T.J. Thalamic projections to elds A, AI, P, and VP in the cat auditory cortex // J. Comp. Neurol. 1987. V. 265. P. 119–144.
  • Morel A., Kaas J.H. Subdivisions and connections of auditory cortex in owl monkeys // J. Comp. Neurol. 1992. V. 318 (1). P. 27–63.
  • Nelken I., Bizley J.K., Nodal F .R., Ahmed B., Schnupp J.W.H., King A.J. Large-scale organization of ferret auditory cortex revealed using continuous acquisition of intrinsic optical signals // J. Neurophysiol. 2004. V. 92. P. 2574–2588.
  • Niimi K., Matsuoka M. Thalamocortical organization of the auditory system in the cat studied by retrograde axonal transport of horseradish peroxidase // Adv. Anat. Embryol. Cell Biol. 1979. V. 57. P. 1–56.
  • O’Connel M., Falchier A., McGinnis T., Schroeder C.E., Lakatos P. Dual mechanism of neuronal ensemble inhibition in primary auditory cortex // Neuron. 2011. V. 69. P. 805–817.
  • Ostwald J. The functional organization of the auditory cortex in the CF-FM bat Rhinolophus ferrumequinum // Animal sonar systems / Eds Busnel R.G., Fish J.F. New York, Plenum Press, 1980. P. 953–955.
  • Ostwald J. Tonotopical organization and pure tone response characteristics of single units in the auditory cortex of the greater horseshoe bat // J. Comp. Physiol. A. 1984. V. 155 (6). P. 821–834.
  • Paloff A., Hinova-Palova D. Topographical distribution of NADPH-Diaphorase positive neurons in the cat’s inferior colliculus // J. Hirnforschung. 1998. V . 39. P . 231– 243.
  • Pandya D.N., Hallett M., Mukherjee S.K. Intra-and interhemispheric connections of the neocortical auditory system in the rhesus monkey // Brain Res. 1969. V. 14. P. 49–65.
  • Pandya D.N., Sanides F. Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern // Z. Anat. Entwicklungsgesch. 1973. V. 139. P. 127–161.
  • Pandya P.K., Rathbun D.L., Moucha R., Engineer N.D., Kilgard M.P. Spectral and temporal processing in rat posterior auditory cortex // Cereb. Cortex. 2008. V. 18. P. 301–314.
  • Paula-Barbosa M.M., Feyo P.B., Sousa-Pinto A. The association connexions of the suprasylvian fringe (SF) and other areas of the cat auditory cortex // Exp. Brain Res. 1975. V. 23. P. 535–554.
  • Petrides M., Pandya D.N. Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey // Europ. J. Neurosci. 2002. V. 16 (2). P. 291–310.
  • Phillips D.P ., Irvine D.R.F . Properties of single neurons in the anterior auditory eld (AAF) of cat cerebral cortex // Brain Res. 1982. V. 248. P. 237–244.
  • Pienkowski M., Harrison R. V. Tone frequency maps and receptive elds in the developing chinchilla auditory cortex // J. Neurophysiol. 2005. V. 93(1). P. 454–466.
  • Polley D.B., Read H.L., Storace D.A., Merzenich M.M.
  • Multiparametric auditory receptive eld organization across ve cortical elds in the albino rat // J. Neurophysiol. 2007. V. 97 (5). P. 3621–3638.
  • Popelár J., Nwabueze-Ogbo F.C., Syka J. Changes in neuronal activity of the inferior colliculus in rat after temporal inactivation of the auditory cortex // Physiol. Res. 2003. V. 52. P. 615–628.
  • Preuss T.M., Goldman-Rakic P.S. Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca // J. Comp. Neurol. 1991. V. 310 (4). P. 475–506.
  • Profant O., Burianova J., Syka J. The response properties of neurons in different elds of the auditory cortex in the rat // Hear. Res. 2013. V. 296. P. 51–59.
  • Rajan R., Dubaj V., Reser D.H., Rosa M.G. Auditory cortex of the marmoset monkey–complex responses to tones and vocalizations under opiate anaesthesia in core and belt areas // Europ. J. Neurosci. 2013. V. 37 (6). P. 924–941.
  • Read H.L., Winer J.A., Schreiner C.E. Functional architecture of auditory cortex // Curr. Opin. Neurobiol. 2002. V. 12. P. 433–440.
  • Read H.L., Winer J.A., Schreiner C.E. Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 8042–8047.
  • Reale R. A., Imig T. J. Tonotopic organization in auditory cortex of the cat // J. Comp.Neurol. 1980. V. 192 (2). P. 265–291.
  • Reale R.A., Brugge J.F., Feng J.Z. Geometry and orientation of neuronal processes in cat primary auditory cortex (AI) related to characteristic-frequency maps // Proc. Natl. Acad. Sci. USA. 1983. V. 80. P. 5449–5453.
  • Reale R.A., Imig T.J. Auditory cortical eld projections to the basal ganglia of the cat // Neuroscience. 1983. V. 8. P. 67–86.
  • Recanzone G.H., Engle J.R., Juarez-Salinas D.L. Spatial and temporal processing of single auditory cortical neurons and populations of neurons in the macaque monkey // Hear. Res. 2011. V. 271 (1). P. 115–122.
  • Redies H., Sieben U., Creutzfeldt O.D. Functional subdivisions in the auditory cortex of the guinea pig // J. Comp. Neurol. 1989. V. 282. P. 473–488.
  • Remedios R., Logothetis N.K., Kayser C. An auditory region in the primate insular cortex responding preferentially to vocal communication sounds // J. Neurosci. 2009. V. 29 (4). P. 1034–1045.
  • Richter K., Hess A., Scheich H. Functional mapping of transsynaptic effects of local manipulation of inhibition in gerbil auditory cortex // Brain Res. 1999. V. 831. P. 184–199.
  • Rockel A.J., Jones E.G. The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus // J. Comp. Neurol. 1973. V. 147. P. 11–60.
  • Romanski L.M., Tian B., Fritz J., Mishkin M., GoldmanRakic P.S., Rauschecker J.P. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex // Nature Neurosci. 1999. V. 2 (12). P. 1131–1136.
  • Rose J.E. The cellular structure of the auditory region of the cat // J. Comp. Neurol. 1949. V. 91. P. 409–439.
  • Rose J.E., Woolsey C.N. Cortical connections and functional organization of thalamic auditory system of the cat // Biological and Biochemical Bases of Behavior. Madison: U. Wisconsin Press, 1958.
  • Rose J.E., Woolsey C.N. Organization of the mammalian thalamus and its relationships to the cerebral cortex // EEG clin. Neurophysiol. 1949. V. 1. P. 391–404.
  • Rothschild G., Nelken I., Mizrahi1 A. Functional organization and population dynamics in the mouse primary auditory cortex // Nature Neurosci. 2010. V. 13(3). P. 353–362.
  • Rutkowski R.G., Miasnikov A.A., Weinberger N.M. Characterisation of multiple physiological elds within the anatomical core of rat auditory cortex // Hear. Res. 2003. V. 181 (1). P. 116–130.
  • Sakai M., Suga N. Centripetal and centrifugal reorganizations of frequency map of auditory cortex in gerbils // Proc. Natnl Acad. Sci. 2002. V . 99 (10). P . 7108– 7112.
  • Sally S.L., Kelly J.B. Organization of auditory cortex in the albino rat: sound frequency // J. Neurophysiol. 1988. V. 59. P. 1627–1638.
  • Scho eld B.R. Projections to the inferior colliculus from layer VI cells of auditory cortex // Neuroscience. 2009. V. 159. P. 246–258.
  • Schulze H., Hess A., Ohl F.W., Scheich H. Superposition of horseshoe-like periodicity and linear tonotopic maps in auditory cortex of the Mongolian gerbil // Europ. J. Neurosci. 2002. V. 15 (6). P. 1077–1084.
  • Schulze H., Ohl F.W., Heil P., Scheich H. Field-specific responses in the auditory cortex of the unanesthestized Mongolian gerbil to tones and slow frequency modulations // J. Comp. Physiol. A. 1997. V. 181. P. 573–589.
  • Shen J., Xu Z., Yao Y. Topography of acoustic response characteristics in the auditory cortex of the Kunming mouse // Chinese Science Bulletin. 2000. V. 45 (5). P. 443–448.
  • Sousa-Pinto A. Cortical projections of the medial geniculate body in the cat // Adv. Anat. Embryol. Cell Biol. 1973. V. 48. P. l–42.
  • Stiebler I. A distinct ultrasound-processing area in the auditory cortex of the mouse // Naturwissenschaften. 1987. V. 74. P. 96–97.
  • Stiebler I., Neulist R., Fichtel I., Ehret G. The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation // J.Comp. Physiol. A. 1997. V. 181. P. 559–571.
  • Suga N. Amplitude spectrum representation in the Dopplershifted-CF processing area of the auditory cortex of the mustache bat // Science. 1977. V. 196 (4285). P. 64–67.
  • Suga N. Auditory neuroethology and speech processing: complex sound processing by combination-sensitive neurons // Funct. Aud. System. New York, John Wiley & Sons, 1988. P. 679–720.
  • Suga N. Functional properties of auditory neurons in the cortex of echo-locating bats // The J. Physiol. 1965. V. 181 (4). P. 671–700.
  • Suga N. Role of corticofugal feedback in hearing // J. Comp. Physiol. A. 2008. V. 194. P. 169–183.
  • Suga N. The extent to which biosonar information is represented in the bat auditory cortex // Dynamic Aspects of Neocortical Function. 1984. P. 315–373.
  • Suga N., Jen P .H.S. Disproportionate tonotopic representation for processing species-speci c CF-FM sonar signals in the mustache bat auditory cortex // Science. 1976. V. 194. P. 542–544.
  • Suga N., Kuzirai K., O’Neill W.E. How biosonar information is represented in the bat cerebral cortex // Neuronal Mechanisms of Hearing. New York: Plenum Press, 1981. P. 197–219.
  • Suga N., Ma X. Multiparametric corticofugal modulation and plasticity in the auditory system // Nature Rev. Neurosci. 2003. V. 4 (10). P. 783–794.
  • Suga N., Manabe T. Neural basis of amplitude-spectrum representation in auditory cortex of the mustached bat // J. Neurophysiol. 1982. V. 47 (2). P. 225–255.
  • Suga N., O’Neill W.E. Auditory processing of echoes: representation of acoustic information from the environment in the bat cerebral cortex // Animal sonar systems. Springer. USA, 1980. P. 589–611.
  • Sugimoto S., Sakurada M., Horikawa J., Taniguchi I. The columnar and layer-speci c response properties of neurons in the primary auditory cortex of Mongolian gerbils // Hear. Res. 1997. V. 112. P. 175–185.
  • Taniguchi I., Sugimoto S., Hess A., Horikawa J., Hosokawa Y., Scheich H. Spatio-temporal pattern in the guinea pig auditory cortex // The Auditory Cortex. Mahwah – London, Lawrence Erlbaum Associates Inc., 2005. P. 315–330.
  • Thomas H., Tillein J., Heil P., Scheich H. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of elds // Eur. J. Neurosci. 1993. V. 5. P. 882–897.
  • Thompson R.F., Sindberg R.M. Auditory response elds in association and motor cortex of cat // J. Neurophysiol. 1960. V. 23. P. 87–105.
  • Tian B., Kuśmierek P., Rauschecker J.P. Analogues of simple and complex cells in rhesus monkey auditory cortex // Proc. Natnl Acad. Sci. 2013. V. 110 (19). P. 7892–7897.
  • Tian B., Rauschecker J.P. Neuronal responses to frequency modulated sounds in the posterior auditory eld (PAF) of the cat’s cortex // Soc. Neurosci. Abstr. 1993. V. 19. P. 843.
  • Tian B., Reser D., Durham A., Kustov A., Rauschecker J.P. Functional specialization in rhesus monkey auditory cortex // Science. 2001. V. 292(5515). P. 290–293.
  • Tunturi A.R. Anatomy and physiology of the auditory cortex // Neural Mechanisms Audit. Vestib. Systems. Spring eld, Charles C. Thomas, 1960.
  • Velenovsky D.S., Cetas J.S., Price R.O., Sinex D.G., McMullen N.T. Functional subregions in primary auditory cortex de ned by thalamocortical terminal arbors: an electrophysiological and anterograde labeling study // J. Neurosci. 2003. V. 23. P. 308–316.
  • Villa A.E.P. Spatio-Temporal Patterns of Spike Occurrences in Freely-Moving Rats Associated to Perception of Human Vowels // The Auditory Cortex. Mahwah – London, Lawrence Erlbaum Assoc. Inc., 2005. P. 275–294.
  • Wallace M.N., Roeda D., Harper M.S. Deoxyglucose uptake in the ferret auditory cortex // Exp. Brain Res. 1997. V. 117. P. 488–500.
  • Wallace M.N., Rutkowski R.G., Palmer A.R. A ventrodorsal belt is adjacent to the guinea pig primary auditory cortex // Neuroreport. 1999. V. 10. P. 2095–2099.
  • Wallace M.N., Rutkowski R.G., Palmer A.R. Identi cation and localization of auditory areas in guinea pig cortex // Exp. Brain Res. 2000. V. 132. P. 445–456.
  • Willott J.F., Aitkin L.M., McFadden S.L. Plasticity of auditory cortex associated with sensorineural hearing loss in adult C57BL/6J mice // J. Comp. Neurol. 1993. V. 329. P. 402–411.
  • Winer J.A., Prieto J.J. Layer V in cat primary auditory cortex (AI): cellular architecture and identi cation of projection neurons // J. Comp. Neurol. 2001. V. 434. P. 379–412.
  • Woolsey C.N. Cortical Sensory Organization: Multiple Auditory Areas. Humana Press, 1982. P. 231–256.
  • Woolsey C.N. Tonotopic organization of the auditory cortex // Physiol. Audit. System: A Workshop / Ed. M.B. Sachs. Baltimore: National Educational Consultants. 1971. P. 271–282.
  • Woolsey C.N., Adrian H., Lifschitz W. Activity of neuronal units in the auditory area of the cerebellum of decerebrate cats // Science. 1964. V. 146. P. 435–436.
  • Woolsey C.N. Organization of cortical auditory system // Sensory communication. Cambridge, MA. MIT Press, 1961. P. 235–257.
  • Woolsey C.N. Organization of cortical auditory system: A review and a synthesis // Neural Mechan. Audit. Vestib. Systems. Spring eld. Charles C. Thomas, 1960.
  • Woolsey C.N., Walzl E.M. Cortical auditory area of Macaca mulatta and its relation to the second somatic sensory area (Sm II) // Cortical Sensory Organization. Multiple auditory areas / Totowa, New Jersey. Humana Press, 1982. P. 231–256.
  • Woolsey C.N., Walzl E.M. Topical projection of nerve bres from local regions of the cochlea to the cerebral cortex of the cat // Johns Hopk. Hosp. Bull. 1942. V. 71. P. 315–344.
  • Yan J., Zhang Y., Ehret G. Corticofugal shaping of frequency tuning curves in the central nucleus of the inferior colliculus of mice // J. Neurophysiol. 2005. V. 93. P. 71–83.
  • Zilles K., Wree A. Cortex: areal and laminar structure // The Rat Nervous System. Forebrain and Midbrain / New York, Academic Press, 1985. V.1. P. 375–392.
  • Zilles K., Zilles B., Schleicher A. A quantitative approach to cytoarchitectonics. 6. The areal pattern of the cortex of the albino-rat // Anat. Embryol. 1980. V. 159. P. 335–360.