Responses of single neurons located in inferior colloculus of the grass frog to long tones, amplitude modulated by
repetitive segments of low-frequency noise were recorded in fully-adapted mode. The carrier frequency corresponds to the
characteristic frequency of the investigated cells (range: 0.2 kHz – 2.0 kHz). Repeating low frequency (0–15 Hz)
segments of noise with duration 433, 866, 1712 or 3424 ms were used for modulation The most detailed study was carried
out with the segment’s duration of 866 ms. Cyclic histograms showing the change in the probability of spike generation
along the period of the modulation were compared directly with the shape of the modulating function. Also, we have
identi ed which features of the envelope give rise to spike discharges in studied cells. The great majority of neurons
do not respond to the amplitude of the signal per se, but to the envelope segments corresponding to the increase in the
amplitude or to the segments containing the maximum of acceleration. Comparison with the data obtained in medullar
auditory nucleus suggests that along the auditory pathway the number of cells which respond to changes in the stimulus
considerably increase.
Key words:
auditory system, amplitude modulation, temporal features, the rate of amplitude growth, acceleration, adaptation
Cite:
Bibikov N. G.
Vydelenie nekotorykh osobennostei nizkochastotnoi ogibayushchei tonalnogo signala neironami slukhovogo tsentra srednego mozga lyagushki
[Allocation of the characteristic features of in low-frequency envelope of the tone by the neurons in the midbrain auditory center of the frog].
Sensornye sistemy [Sensory systems].
2016.
V. 30(3).
P. 201-214 (in Russian).
References:
- Bibikov N.G. “Novelty” units in the auditory system of the frog // Zhurn. Vysshei Nervnoi Deat. 1977. V.27. N.5. P. 1091–1098 [in Russian]).
- Bibikov N.G. Responses of the torus semicircularis units of the grass frog (Rana temporaria) to the sounds imitated the temporal features of the mating call// Zool. zhurn. 1980. V.59. N. 4. P. 577–586 [in Russian]).
- Bibikov N.G. Temporal parameters of sound, determined the auditory neurons ring / Proc. IV Kongress of Physiologists of UIS. 2014a. P.89 [in Russian].
- Bibikov N.G. Correlation of neural responses in the cochlear nucleus with low-frequency noise amplitude modulation of a tonal signal// Acoustical Physics 2014b. V. 60. N. 5. P. 555–566 [in Russian].
- Bibikov N.G., Ivanitsky G.A. Modelling spontaneous pulsation and short-term adaptation in the auditory nerve bers // Biophysics. 1985. V. 30. P. 141–144 [in Russian].
- Bibikov N.G., Nizamov S.V. Temporal features of sound those evoked response in auditory neurons// Proc. 17Th All Russ. Neuroinform. Conf. 2015. V .3. P . 191–200 [in Russian].
- Bibikov N.G. Some features of sound signal envelope by the frog’s cochlear nucleus neurons // Bio zika. 2015. V. 60. No 3. P. 409–419 [in Russian].
- Vartanian I.A., Gershuni G.V. Reaction of posterior colliculus neurons to amplitude modulated signals with changes in carrier frequency and modulation rhythm // Neurophysiology. 1971. V. 4. No .1. P. 12–22 [in Russian].
- Aertsen A.M.H.J., Johannesma P.I.M., Hermes D.J. Spectrotemporal receptive elds of auditory neurons in the grassfrog. lI. Analysis of the stimulus-event relation for tonal stimuli // Biological Cybernetic. 1980 . V. 38. P. 235–248.
- Aertsen A.M,. Olders J.H., Johannesma P.I. Spectro-temporal receptive elds of auditory neurons in the grassfrog. III. Analysis of the stimulus event relation for natural stimuli // Biol. Cybern. 1981. V. 39. P. 195–209.
- Andoni S., Pollak G.D. Selectivity for spectral motion as a neural сomputation for encoding natural communication signals in bat inferior colliculus // J. Neurosci. 2011. V. 31(46). P. 16529–16540.
- Andoni S., Pollak G.D. Spectrotemporal receptive elds in the inferior colliculus revealing selectivity for spectral motion in conspeci c vocalizations // J. Neurosci. 2007. V. 27(18). P. 4882–4893.
- Ayala A., Pérez-González D., Duque D., Nelken I., Malmierca M.S. Frequency discrimination and stimulus deviance in the inferior colliculus and cochlear nucleus // Frontiers in Neural Circuits. 2013.V. 6. art.119. http:// dx.doi.org.sci-hub.io/10.3389/fncir.2012.00119
- Bibikov N.G., Grubnik O.N. Responses to intensity increments and decrements in different types of midbrain auditory units of the frog // Acoustical signal processing in the central auditory system / Ed. Syka. N.Y. Plenum Pr., 1997. P. 271–277.
- Bibikov N.G. Physiological correlates of “mean-term” adaptation // J. Acoust. Soc. Amer. 1998. 103(5). P. 2846.
- Bibikov N.G. Neural coding of amplitude modulation adapts to the stimulus parameters // Abstract Viewer. Itinerary Planner. Washington, DC: Society for Neuroscience CD / 2008. Program No. 664.9/JJ31 http:// www.abstractsonline.com".
- Bibikov N.G. Temporal features of complex sounds which evoke neuronal response. Is this the instantaneous amplitude, rate of its change, or both of these parame-ters? // Proc. 21st Internat. Congress on Sound and Vibration. Bejing. 2014. art. 296. P. 1–8.
- Christianson G.B., Sahani M., Linden J.F. The consequences of response nonlinearities for interpretation of spectrotemporal receptive elds //J. Neurosci. 2008. V. 28(2). P. 446–455.
- Dean I., Harper N.S., McAlpine D. Neural population coding of sound level adapts to stimulus statistics// Nat. Neurosci. 2005. V. 8. P. 1684–1689.
- De Boer E., Kuyper P. Triggered correlation // IEEE Trans. Biotmed. Eng. 1968. V. 15. P. 169–179.
- De Boer E., De Jongh H.R. On cochlear encoding: Potentialities and limitations of the reverse-correlation technique // J. Acoust. Soc. Am. 1978. V. 63. No 1. С. 115–135.
- Depireux D.A., Simon J.Z., Klein D.J., Shamma S.A. Spectro-temporal response eld characterization with dynamic ripples in ferret primary auditory cortex // J. Neurophysiol. 2001. V. 85. P. 1220–1234.
- Drullman R., Festen J.M., Plomp R. Effect of reducing slow temporal modulations on speech reception // J. Acoust. Soc. Am. 1994. V. 95. P. 2670–2680.
- Eggermont J.J., Aertsen A.M., Johannesma P.I. Prediction of the responses of auditory neurons in the midbrain of the grass frog based on the spectro-temporal receptive eld // Hearing Research. 1983. V. 10. P. 191–202.
- Eggermont J.J. Context dependence of spectro-temporal receptive elds with implications for neural coding // Hearing Research. 2011. V. 271. P. 123–132.
- Elliott T.M., Theunissen F.E. The modulation transfer function for speech intelligibility // PLOS comput biol. 2009. Т. 5. No 3. P. e1000302-e1000302.
- Escabi M.A., Schreiner C.E. Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain// J. Neurosci. 2002. V. 22(10). P. 4114–4131.
- Gay Y., Kotak V.C., Sanes D.H., Rinzel J. On the localization of complex sounds: temporal encoding based on input-slope coincidence detection of envelopes // J. Neurophysiol. 2014. V. 112. P. 802–813.
- Gill P., Zhang J., Woolley S.M., Fremouw T., Theunissen F.E. Sound representation methods for spectrotemporal receptive eld estimation // Comput. Neurosci. 2006. V.21(1). P. 5–20.
- Gourévitch B., Noreña A., Shaw G., Eggermont J.J. Spectrotemporal receptive elds in anesthetized cat primary auditory cortex are context dependent// Cerebral Cortex. 2009. V. 19(6). P. 1448–1461.
- Heil P. Auditory cortical onset responses revisited. I. Firstspike timing // J. Neurophysiol. 1997. V. 7. P. 2616–2641.
- Kaplan H.M. Anaesthesia in amphibian and reptiles // Proc. Fed. Am. Soc. Exp. Biol. 1969. V. 28. P. 1541–1546.
- Keller C.H., Takahashi T.T. Spike timing precision changes with spike rate adaptation in the owl’s auditory space map // J.Neurophysiol. 2015. V. 114. P. 2204–2219.
- Krishna B.S., Semple M.N. Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus // J. Neurophysiol. 2000. V. 84(1). P. 255–273.
- Linden J.F., Liu R.C., Sahani M., Schreiner C.E., Merzenich M.M. Spectrotemporal structure of receptive elds in areas AI and AAF of mouse auditory cortex // J. Neurophysiol. 2003. V. 90. P. 2660–2675.
- Machens C.K., Wehr M.S., Zador A.M. Linearity of cortical receptive elds measured with natural sounds // J. Neurosci. 2004. V. 24(5). P. 1089–1100.
- Malone B.J., Scott B.H., Semple M.N. Temporal codes for amplitude contrast in auditory cortex // J.Neurosci. 2010. V. 30(2). P. 767–784.
- Miller L.M., Escabi M.A., Read H.L., Schreiner C.E. Spectrotemporal receptive elds in the lemniscal auditory thalamus and cortex // J. Neurophysiol. 2002. V. 87. P. 516–527.
- Rutkowski R.G., Shackleton T.M., Schnupp J.W., Wallace M.N., Palmer A.R. Spectrotemporal receptive eld properties of single units in the primary, dorsocaudal and ventrorostral auditory cortex of the guinea pig // Audiol. Neurootology. 2002. V. 7. P. 214–217.
- Sharpee T.O., Nagel K.I., Doupe A.J. Two-dimensional adaptation in the auditory forebrain // J. Neurophysiol. 2011. V. 106. P. 1841–1861.
- Shannon C.E., Weaver W. The Mathematical Theory of Communication. Urbana: Univ. Illinois Press, 1949. 117 p.
- Suckow M.A., Terril L.A., Grigdesby C.F., March P.A.
- Evaluation of hypothermia-induced analgesia and in uence of opioid antagonists in leopard frogs (Rana pipiens) // Pharmacol. Biochem. Behav. 1999. V. 63. P. 39–43.
- Theunissen F.E., Sen K., Doupe A.J. Spectral-temporal receptive elds of nonlinear auditory neurons obtained using natural sounds // J. Neurosci. 2000. V. 20. P. 2315– 2331.
- Versnel H., Zwiers M.P., van Opstal A.J. Spectrotemporal response properties of inferior colliculus neurons in alert monkey // J. Neurosci. 2009 . V. 29. P. 9725–9739.
- Zimmermann M. Ethical principles for maintenance and use of animals in neuroscience research // Neurosci. Lett. 1987. V. 73. P. 1.
- Zheng Y., Escabí M.A. Distinct roles for onset and sustained activity in the neuronal code for temporal periodicity and acoustic envelope shape // J. Neurosci. 2008. V. 28(52). P. 14230–14244.
- Zhou Y., Wang X. Cortical processing of dynamic sound envelope transitions // J. Neurosci. 2010. V. 30(49). P. 16741–16754.