• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Eye movement parameters are influenced by cognitive task in viewing of static and dynamic scenes

© 2016 M. A. Shurupova, V. N. Anisimov, L. V. Tereshchenko, A. V. Latanov

Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation

Received 20 Sep 2015

We conducted a comparative study of eye movement parameters in humans while viewing static and dynamic scenes in different conditions – free viewing and visual cognitive task. The patterns of visual activity considerably influence the eye movement parameters: in cognitive task performance fixation durations were shorter and saccadic amplitudes were larger when viewing both static and dynamic scenes. Longer fixation durations and larger saccadic amplitudes are observed in viewing dynamic scenes compared to viewing static scenes. Fixation durations vary considerably depending on the task while viewing dynamic scenes and almost do not depend on the task when viewing static scenes. Only the type of the visual scene (static and dynamic) but not the kind of visual activity (free viewing and task performance) determines saccadic amplitudes. The dynamics of eye movement parameters revealed in our study are determined by the balance of two visual modes (ambient and focal) with different types of visual activity.

Key words: eye movements, visual modes, static visual scene, dynamic visual scene, visual task, attention, saccades, fixations

Cite: Shurupova M. A., Anisimov V. N., Tereshchenko L. V., Latanov A. V. Vliyanie kognitivnoi zadachi na parametry dvizhenii glaz pri prosmotre staticheskikh i dinamicheskikh stsen [Eye movement parameters are influenced by cognitive task in viewing of static and dynamic scenes]. Sensornye sistemy [Sensory systems]. 2016. V. 30(1). P. 53-62 (in Russian).

References:

  • Anisimov V.A., Fedorova O.V., Latanov A.V. Eye movement parameters in reading sentences with syntactic ambiguities in russian // Human Physiology. 2014. V. 40 (5). P. 57–68 [in Rusian]).
  • Ermachenko N.S., Ermachenko A.A., Latanov A.V. Integration of videooculography and encephalography for investigation of visual selective attention in humans // Zh. Vyssh. Nerv. Deiat. Im. I. P. Pavlova. 2011. V. 61 (5). P. 631–640 [in Rusian]).
  • Yarbus A.L. Eye movements during examination of complex objects // Biofizika. 1961. V. 6 (2). P. 207– 212 [in Russian]).
  • Antes J. Time course of picture viewing // J. Exp. Psychol. 1974. V. 103 (1). P. 62–70.
  • Borji A., Itti L. Defending Yarbus: Eye movements reveal observers' task // J. Vis. 2014. V. 14 (3). P. 1–22.
  • Corbetta M., Akbudak E., Conturo T.E., Snyder A.Z., Ollinger J.M., Drury H.A., Linenweber M.R., Petersen S.E., Raichle M.E., Van Essen D.C., Shulman G.L. A common network of functional areas for attention and eye movements // Neuron. 1998. V. 21 (4). P. 761–773.
  • DeAngelus М., Pelz J.B. Top-down control of eye movements: Yarbus revisited // Vis. Cogn. 2009. V. 17 (6–7). P. 790–811.
  • Deubel H., Schneider W.X. Saccade target selection and object recognition: evidence for a common attentional mechanism // Vision Res. 1996. V. 36 (12). P. 1827– 1837.
  • Dorr M., Martinetz T., Gegenfurtner K., Barth E. Variability of eye movements when viewing dynamic natural scenes // J. Vis. 2010. V. 10 (10). P. 1–17.
  • Follet B., Le Meur O., Baccino T. New insights into ambient and focal visual fixations using an automatic classification algorithm // i-Perception. 2011. V. 2. P. 592–610.
  • Frost D., Pöppel E. Different programming modes of human saccadic eye-movements as a function of stimulus eccentricity – indications of a functional subdivision of visual field // Biol. Cybern. 1976. V. 23 (1). P. 39–48.
  • Goodale M.A., Milner A.D., Jakobson L.S., Carey D.P. A neurological dissociation between perceiving objects and grasping them // Nature. 1991. V. 349 (6305). P. 154–156.
  • Henderson J.M., Nuthmann A., Luke S.G. Eye movement control during scene viewing: immediate effects of scene luminance on fixation durations // J. Exp. Psychol. Hum. Percept. Perform. 2013. V. 39 (2). P. 318–322.
  • Henderson J.M., Pierce G. Direct control of fixation durations during active scene perception // Vis. Cogn. 2006. V. 15. P. 108–112.
  • Itti L., Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention // Vision. Res. 2000. V. 40 (10). P. 1489–1506.
  • Itti L. Quantifying the contribution of lowlevel saliency to human eye movements in dynamic scenes // Vis. Cogn. 2005. V. 12. P. 1093–1123.
  • Kanan Ch., Ray N.A., Bseiso D.N.F., Hsiao J.H., Cottrell G.W. Predicting an observer’s task using multi-fixation pattern analysis // Proceedings of the symposium on eye tracking research and applications // Association for Computing Machinery: NY. 2014. P. 287–290.
  • Le Meur O., Le Callet P., Barba D. Predicting visual fixations on video based on low-level visual features // Vision Res. 2007. V. 47 (19). P. 2483–2498.
  • Le Meur O., Le Callet P., Barba D., Thoreau D. A coherent computational approach to model the bottom-up visual attention // IEEE Transactions on pattern analysis and machine intelligence (PAMI). 2006. V. 28 (5). P. 802– 817.
  • Loftus G.R. Picture perception: effects of luminance on available information and information-extraction rate // J. Exp. Psychol. Gen. 1985. V. 114 (3). P. 342–356.
  • Mills M., Van der Stigchel S., Hollingworth A., Hoffman L., Dodd M. Examining the influence of task-set on eye movements and fixations // J. Vis. 2011. V. 11 (8). P. 1–15.
  • Pannasch S., Helmert J., Roth K., Herbold A., Walter H. Visual fixation durations and saccade amplitudes: shifting relationship in a variety of conditions // J. Eye Mov. Res. 2008. V. 2 (2). P. 1–19.
  • Petersen S., Posner M. The attention system of the human brain: 20 years after // Ann. Rev. Neurosci. 2012. No 35. P. 73–89.
  • Reingold E.M., Glaholt M.G. Cognitive control of fixation duration in visual search: The role of extrafoveal processing // Vis. Cogn. 2014. V. 22 (3–4). P. 610– 634.
  • Rizzolatti G., Luppino G. The cortical motor system // Neuron. 2001. V. 31 (6). P. 889–901.
  • Rizzolatti G., Riggio L., Sheliga B.M. Space and selective attention // Attention and Performance / Eds C. Umiltà, V. Moscovitch. Cambridge, MA. MIT Press, 1994. Ch. XV. P. 231–265.
  • Sheliga B.M., Riggio L., Rizzolatti G. Spatial attention and eye movements // Exp. Brain Res. 1995. V. 105 (2). P. 261–275.
  • Smith T., Mital P. Attentional synchrony and the influence of viewing task on gaze behavior in static and dynamic scenes // J. Vis. 2013. V. 13 (8). P. 1–24.
  • Tatler B., Vincent B. Systematic tendencies in scene viewing // J. Eye Mov. Res. 2008. V. 2 (2). P. 1–18.
  • Taya S., Windridge D., Osman M. Looking to score: The dissociation of goal influence on eye movement and meta-attentional allocation in a complex dynamic natural scene // PLoS One. 2012. V. 7. P. 23–41.
  • Unema P., Pannasch S., Joos M., Velichkovsky B. Time course of information processing during scene perception: The relationship between saccade amplitude and fixation duration // Vis. Cogn. 2005. V. 12. (3). P. 473–494.
  • Ungerleider L., Mishkin M. Two cortical visual systems // Analysis of visual behavior/ Eds J. Ingle, M. Goodale, R. Mansfield. Cambridge, MA. MIT Press, 1982. P. 549–586.
  • Velichkovsky B., Joos M., Helmert J., Pannasch S. Two visual systems and their eye movements: Evidence from static and dynamic scene perception // Proc. XXVII Conf. Cogn. Sci. Society / Eds B. Bara, L. Barsalou, M. Bucciarelli. NY. Lawrence Erlbaum, 2005. P. 2283– 2288.
  • Velichkovsky B., Rothert A., Kopf M., Dornhoefer S., Joos M. Towards an express diagnostics for level of processing and hazard perception // Transportation Res. Part F. 2002. V. 5 (2). P. 145–156.