• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Effects of temporal and spatial features of visual stimulation on saccades in normal controls and parkinsonian patients

© 2016 P.O. Ratmanova, A.S. Litvinova, R.R. Bogdanov, D.A. Napalkov, V.B. Polyanskii

Faculty of Biology, M.V. Lomonosov Moscow State University 119234 Moscow, Leninskie Gory 1/12, Russian Federation
Moscow Regional Research and Clinical Institute n.a. M.F. Vladimirsky 129110 Moscow, Schepkina str., 61/2, Russian Federation

Received 22 Sep 2015

We studied effects of spatial and temporal features of visual stimulation on saccadic eye movement’s parameters in young and older healthy volunteers and patients with early stages of Parkinson’s disease. Three stimulation paradigms were used: no delay, overlap and gap. The visual targets were located to the right and left, up and down from the central stimulus. Our findings have demonstrated that the temporal characteristics of stimulation had significant effects on saccadic latency and duration in all the groups of participants. The factor of spatial location of visual targets had less pronounced influence on latency and duration of saccades than the temporal factor. Spatial asymmetry of saccadic parameters was associated with individual properties of the participants, age and disease factors. Patients with Parkinson’s disease had longer saccadic latencies, produced gap effect with smaller magnitude and performed much more multistep saccades then age-matched controls. The degree of saccadic abnormalities demonstrated by parkinsonian patients depended both on stimulation paradigm and on spatial location of visual targets.

Key words: saccades, gap effect, asymmetry, Parkinson’s disease

Cite: Ratmanova P. O., Litvinova A. S., Bogdanov R. R., Napalkov D. A., Polyanskii V. B. Vliyanie vremennykh i prostranstvennykh kharakteristik stimulov na parametry sakkadicheskikh dvizhenii glaz v norme i pri bolezni parkinsona [Effects of temporal and spatial features of visual stimulation on saccades in normal controls and parkinsonian patients]. Sensornye sistemy [Sensory systems]. 2016. V. 30(1). P. 29-41 (in Russian).

References:

  • Golubev V.L., Levin Ya.I., Vein A.M. Parkinson's disease and parkinsonian syndromes. Moscow. MEDpress, 2000. 416 p. [in Russian].
  • Kolesnikova O.V., Tereshchenko L.V., Molchanov S.A., Latanov A.V., Shul'govskiĭ V.V. Asymmetry of the latent periods of saccades in human depending on visual space complicity // Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 2006. V. 56 (2). P. 202–210 [in Russian].
  • Litvinova A.S., Ratmanova P.O., Evina E.I., Bogdanov R.R., Kunitsyna A.N., Napalkov D.A. Age-related changes in saccadic eye movements in healthy subjects and patients with Parkinson’s disease // Human Physiology. 2011. V. 37 (2). P. 40–47 [in Russian].
  • Moiseeva V.V., Slavutskaia M.V., Shul'govskiĭ V.V. Lateralization of saccadic latency during monocular presentation of stimuli to a leading and non-leading eye // Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 2003. V. 53 (1). P. 33–40 [in Russian].
  • Podvigin N.F., Makarov F.N., Shelepin Yu.E. Structural and functional organization of the visual and oculomotor systems. Leningrad. Nauka Publ., 1986. 252 p. [in Russian].
  • Ratmanova P.O., Napalkov D.A., Bogdanov R.R., Latanov A.V., Turbina L.G., Shulgovsky V.V. Effect of dopamine deficiency on the preparation of visually guided saccadic eye movements // Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 2006. V. 56 (5). P. 590–596 [in Russian].
  • Slavutskaya M.V., Moisee- va V.V., Shulgovsky V.V. Attention and eyes movement. Structure of oculomotor system, phenomenology and saccade programming // Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 2008. V. 58 (1). P. 28–45 [in Russian].
  • Tereshchenko L.V., Molchanov S.A., Kolesnikova O.V., Latanov A.V., Shul'govskiĭ V.V. Asymmetry of the amplitude-temporal properties of visually-guided saccades in monkeys depending on the complexity of the spatial scheme of the visual stimulation // Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. 2005. V. 55 (5). P. 639–646 [in Russian].
  • Sheliga B.M., Slavutskaya M.V., Efimova T.V., Kuznetsov Yu.B., Shul'govskii V.V. The effects of visual stimulation pattern on the latency of human saccades // Sensory Systems. 1994. V. 8 (1). P. 58–64 [in Russian].
  • Shulgovsky V.V. Physiology of central nervous system. Moscow. MSU Publ., 1997. 397 p. [in Russian].
  • Yarbus A.L. Eye movements and vision. Moscow. Nauka Publ., 1965. 166 p. [in Russian].
  • Beutter B.R., Eckstein M.P., Stone L.S. Saccadic and perceptual performance in visual search tasks. I. Contrast detection and discrimination // J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2003. V. 20 (7). P. 1341–1355.
  • Brody H., Vijayashankar N. Anatomical changes in the nervous system // The biology of aging / Eds C.E. Finch, L. Hayflick. New York: van Nostrand Reinhold. 1977. P. 241–261.
  • Chan F., Armstrong I.T., Pari G., Riopelle R.J., Munoz D.P. Deficits in saccadic eye-movement control in Parkinson’s disease // Neuropsychologia. 2005. V. 43. P. 784–796.
  • Coubard O., Daunys G., Kapoula Z. Gap effects on saccade and vergence latency // Exp. Brain. Res. 2004. V. 154 (3). P. 368–381.
  • Dorris M.C., Munoz D.P. Saccadic probability influences motor preparation signals and time to saccadic initiation // J. Neurosci. 1998. V. 18 (17). P. 7015– 7026.
  • Edelman J.A., Goldberg M.E. Dependence of saccade-related activity in the primate superior colliculus on visual target presence // J. Neurophysiol. 2001. V. 86. P. 676–691.
  • Everling S., Matthews A., Flohr H. Prestimulus cortical potentials predict the performance in a saccadic distractor paradigm // Clin. Neurophysiol. 2001. V. 112 (6). P. 1088–1095.
  • Findlay J.M., Walker R. A model of saccadic eye movement generation based on parallel processing and competitive inhibition // Behav. Brain Sci. 1999. V. 22. P. 661–721.
  • Fischer B. The preparation of visually guided saccades // Rev. Physiol. Biochem. Pharmacol. 1987. V. 106. P. 1–35.
  • Fischer B., Ramsperger E. Human express saccades: effects of randomization and daily practice // Exp. Brain. Res. 1986. V. 64 (3). P. 569–578.
  • Fischer B., Weber H. Express saccades and visual attention // Behav. Brain Sci. 1993. V. 16 (3). P. 553–610.
  • Goldring J., Fischer B. Reaction times of vertical prosaccades and antisaccades in gap and overlap tasks // Exp. Brain Res. 1997. V. 113 (1). P. 88–103.
  • Hikosaka O., Takikawa Y., Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements // Phys. Rev. 2000. V. 80. P. 953–978.
  • Honda H., Findlay J.M. Saccades to targets in three-dimensional space: dependence of saccadic latency on target location // Percept. Psychophys. 1992. V. 52 (2). P. 167–174.
  • Hutton J.T., Palet J. Lateral saccadic latencies and handedness // Neuropsychologia. 1986. V. 24. P. 449–451.
  • Karatas M. Internuclear and supranuclear disorders of eye movements: clinical features and causes // Eur. J. Neurol. 2009. V. 16 (12). P. 1265–1277.
  • Kimmig H., Hauβmann K., Mergner T., Lücking C.H. What is pathological with gaze shift fragmentation in Parkinson’s disease? // J. Neurol. 2002. V. 249. P. 683–692.
  • Klein C., Fischer B., Hartnegg K., Heiss W.H., Roth M.
  • Optomotor and neuropsychological performance in old age // Exp. Brain Res. 2000. V. 135 (2). P. 141–154.
  • Leigh R.J., Kennard C. Using saccades as a research tool in the clinical neurosciences // Brain. 2004. V. 127. P. 460–477.
  • Mayfrank L., Mobashery M., Kimmig H., Fischer B. The role of fixation and visual attention in the occurrence of express saccades in man // Eur. Arch. Psychiatry Neurol. Sci. 1986. V. 235. P. 269–275.
  • Mohler C.W., Wurtz R.H. Organization of monkey superior colliculus: intermediate layer cells discharging before eye movements // J. Neurophysiol. 1976. V. 39. P. 722–744.
  • Munoz D.P., Broughton J.R., Goldring J.E., Armstrong I.T.
  • Age-related performance of human subjects on saccadic eye movement tasks // Exp. Brain Res. 1998. V. 121. P. 391–400.
  • Munoz D.P., Everling S. Look away: The anti-saccade task and the voluntary control of eye movement // Nat. Rev. Neurosci. 2004. V. 5. P. 218–228.
  • Saslow M.G. Effects of components of displacement-step stimuli upon latency for saccadic eye movement // J. Opt. Soc. Am. V. 57 (8). 1967. P. 1024–1029.
  • Sparks D.L. The brainstem control of saccadic eye movements // Nat. Rev. Neurosci. 2002. V. 3. P. 952–964.
  • Srivastava A., Sharma R., Sood S.K., Shukla G., Goyal V., Behari M. Saccadic eye movements in Parkinson's disease // Indian J. Ophthalmol. 2014. V. 62 (5). P. 538– 544.
  • Terao Y., Fukuda H., Ugawa Y., Hikosaka O. New perspectives on the pathophysiology of Parkinson's disease as assessed by saccade performance: a clinical review // Clin. Neurophysiol. 2013. V. 124 (8). P. 1491– 1506.
  • van Donkelaar P., Saavedra S., Woollacott M. Multiple saccades are more automatic than single saccades // J. Neurophysiol V. 97. 2007. P. 3148–3151.
  • Wichmann T., DeLong M.R. Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder // Ann. N.-Y. Acad. Sci. 2003. V. 991. P. 199– 213.
  • Willard A., Lueck C.J. Ocular motor disorders // Curr. Opin. Neurol. 2014. V. 27 (1). P. 75–82.
  • Yang Q., Kapoula Z. The control of vertical saccades in aged subjects // Exp. Brain Res. 2006. V. 171. P. 67– 77.
  • Zhou W., King W.M. Attentional sensitivity and asymmetries of vertical saccade generation in monkey // Vis. Res. 2002. V. 42. P. 771–777.