• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Protanomaly: Possibilities for compensation and color discrimination training

© 2016 A. V. Belokopytov

Institute for Information Transmission Problems (Kharkevich Institute), RAS 127994 Moscow, B. Karetny per., 19

Received 02 Sep 2015

Principal possibilities and experimental results to compensate strong protanomaly (A degree by Rabkin classification) are discussed. The idea of compensation is to transform visual stimulus radiation spectrum by increasing red radiation fraction 5–6 times compared to the green and blue fractions (active compensation – using modified computer monitors with additional red backlight) or alternatively decrease 5–6 times green and blue radiation fractions compared to the red fraction (passive compensation – using light filters). The main results are obtained for active compensation, when strong feeling of yellow color as a color of special category arises. Color thresholds measurements in the conditions of active compensation show that color discrimination of red colors greatly improves, but color discrimination of green colors becomes noticeably worse. The variant of apparatus for active compensation is found when the training effect occurs, which significantly improves color discrimination and lasts for half a year.

Key words: color vision, color vision deficiencies, protanomaly, color discrimination thresholds, anomaly compensation, color vision training

Cite: Belokopytov A. V. Protanomaliya: vozmozhnost kompensatsii i trenirovki tsvetorazlicheniya [Protanomaly: possibilities for compensation and color discrimination training]. Sensornye sistemy [Sensory systems]. 2016. V. 30(1). P. 3-16 (in Russian).

References:

  • Belokopytov A.V. Compensation of one form of colorblindness (strong protanomaly) // Proc. of 3nd Internat. Sci.Practical Conf. “High-Tech, Fundamental and Applied Research in Physiology and Medicine”/ Eds. A. P. Kudinov, B. V. Krylov. St. Petersburg. Polytech. Univ. Publ. 2012a. V. 2. P. 67-68 [in Russian].
  • Belokopytov A.V. Method for measurement of color discrimination thresholds. Results for persons with anomalous color vision// Proc. of 3nd Internat. Sci. Practical Conf. “High-Tech, Fundamental and Applied Research in Physiology and Medicine”/ Eds. A. P. Kudinov, B. V. Krylov. St. Petersburg. Polytech. Univ. Publ. 2012b. V. 2. P. 69–70 [in Russian)
  • Judd D., Wyszecki G. Color in Science and Industry. M.: Mir, 1978. 592 p. [in Russian].
  • Nyberg N. D., Yustova E. N. Investigation of color vision of dichromats// Studies of the State Optical Institute. 1955. V. 25 (143). P. 33–92 [in Russian].
  • Rabkin E.B., Sokolova E.G., Sosnova T.L. The physiological base of the complex method for increasing the color differentiating function// Sechenov Physiological J. of the USSR. 1974. V. 60(7). P. 1037–1042 [in Russian].
  • Sosnova T.L., Baranova E.L., Buhareva E.A. The pigmentary method of color vision training for railwaymen with congenital color deficiences//Meditsina truda i promyshlennaia ekologiia. 1995. N2. P. 28–31 [in Russian].
  • Yustova E. N. On the issue of the nature of anomalous trichromats color vision// Doklady Akademii Nauk USSR. 1951. V. 81(6). P. 1051–1054 [in Russian].
  • Abrahám G. Principles of correction of colour deficiency by filter glasses // Periodica polytechnica-mechanical engineering. 2001. V.45:(1) P. 3–10.
  • Abrahám G., Wenzel G., Szappanos J. Method and optical means for improving or modifying colour vision and method for making said optical means // PCT patent appl. 1993. No. WO95/05621.
  • Boehm A., MacLeod D., Bosten J. Compensation for redgreen contrast loss in anomalous trichromats// J. Vision. 2014. V. 14(13). P. 1–17. DOI: 10.1167/14.13.19.
  • Mollon J.D. “...aus dreyerley Arten von Membranen oder Molekülen”: George Palmer’s legacy // Colour Vision Deficiencies XIII / Ed. Cavonius C.R. Dordrecht. Kluwer Academic Publ., 1997. P. 1–18.
  • Moreland J. D., Westland S., Cheung V., Dain S.J. Quantitative assessment of commercial filter ‘aids’ for redgreen colour defectives // Ophthalm. Physiol. Optics. 2010. V. 30(5). P. 685–692.
  • Moreland J. D., Cheung V., Westland S. Evaluation of a model to predict anomalous-observer performance with the 100-hue test // J. Optical Soc. Am. A. 2014. V. 31(4). P. 125–130.
  • Nathans J., Thomas D., Hogness D. S. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments // Science. 1986a. V. 232(4747). P. 193–202.
  • Nathans J., Piantanida T. P., Eddy R.L., Shows T.B., Hogness D.S. Molecular genetics of inherited variation in human color vision // Science. 1986b. V. 232(4747). P. 203–210.
  • Neitz J., Carroll J., Yamauchi Y., Neitz M., Williams D. Color perception is mediated by a plastic neural mechanism that is adjustable in adults // Neuron. 2002. V. 35. P. 783–792.
  • Simunovic M. Colour vision deficiency // Eye. 2010. V. 24(5). P. 747–755.
  • Stockman A., Sharpe L. Cone spectral sensitivities and color matching // Color vision: From Genes to Perception/ Eds Gegenfurtner K., Sharpe L. T. Cambridge. Cambridge Univ. Press, 1999. P. 53–87.
  • Takeshita K., Yano K., Kasai Y., Otsuki T. Eyeglass lenses for correcting color vision // US Patent, 2000. No 6135595.
  • Thomas P., Formanikiewicz M., Mollon J. The effect of photopigment optical density on the color vision of the anomalous trichromat // Vision Research. 2011. V. 51. P. 2224–2233.