Thanks to the development of structural and functional magnetic resonance imaging (MRI) methods, in recent decades there
has been a lot of research aimed at elucidating brain abnormalities caused by amblyopia. In the cases of this prevalent
visual disorder, the anomalies causing decreased visual acuity and other visual disabilities cannot be determined by
standard ophthalmologic examination. Since there are several types of this disorder that are fundamentally different in
etiology, it is natural to suggest the presence of different types of corresponding brain abnormalities. In this regard,
before obtaining a general picture of the pathogenesis of amblyopia, studies conducted on groups of specially selected
similar patients are very important. This paper presents the results of a study of school-age children with left-sided
anisometropic amblyopia. In the patients investigated, MRI data revealed interhemispheric differences in the thickness
of the lateral occipital cortex, and resting-state fMRI revealed interhemispheric differences in the local coherence of
the hemodynamic signal within 17 Brodmann area and in the functional connectivity between 17 and 18+19 Brodmann areas.
The data obtained contribute to the creation of a general MRI database on the pathophysiology of amblyopia, help clarify
some controversial issues and indicate the advisability of using resting-state fMRI in ophthalmology.
Key words:
visual system, anisometropic amblyopia, MRI, resting-state fMRI, interhemispheric differences
DOI: 10.31857/S0235009224010027
Cite:
Gorev V. V., Gorbunov A. V., Ya. R. Panikratova, Tomyshev A. S., Hatsenko I. E., Kuleshov N. N., Salmasi J. M., Hasanova K. A., Balashova L. M., Lobanova E. I., Lebedeva I. S.
Izmeneniya v zritelnykh zonakh kory golovnogo mozga u detei pri levostoronnei anizometropicheskoi ambliopii po dannym strukturnoi mrt i funktsionalnoi mrt pokoya
[Changes in the visual areas of the cerebral cortex in children with left-sided anisometropic amblyopia according to structural mri and resting-state fmri].
Sensornye sistemy [Sensory systems].
2024.
V. 38(1).
P. 30–44 (in Russian). doi: 10.31857/S0235009224010027
References:
- Alekseenko S. V., Shkorbatova P. Yu. Deprivacionnaya I disbinokulyarnaya ambliopiya: narusheniya v genikulo-korkovyh zritel’nyh putyah [Deprivation and dysbinocular amblyopia: disorders in the geniculocortical visual pathways]. Al’manah klinicheskoj mediciny [Almanac of Clinical Medicine], 2015. № 36. P. 97—100 (in Russian).
- Alekseenko S. V., Shkorbatova P. Yu. Dinamika razvitiya anomalij v podkorkovom zritel’nom centre golovnogo mozga pri rannem narushenii binokulyarnogo opyta [The time course of abnormalities in the brain subcortical visual centre following early impairment of binocular experience] Al’manah klinicheskoj mediciny [Almanac of Clinical Medicine]. 2016. V. 44. № 3. P. 351—357 (in Russian).
- Kononova N. E., Somov E. E. Ambliopiya I svyazannye s nej problem. [Amblyopia and related problems] Pediatrician. 2018. V. 9. № 1. P. 29—36.
- Lebedeva I. S., Hacenko I. E., Sturov N. V., Guseva M. R., Lobanova I. V., Vyhristyuk O. F., Kyun Yu.A., Tomyshev A. S. Strukturnye osobennosti golovnogo mozga rebenka pri odnostoronnej ambliopii: MRT-issledovanie [Structural features of the child’s brain with unilateral amblyopia: a MRI study]. Zhurnal nevrologii I psihiatrii im S. S. Korsakova [S. S. Korsakov Journal of Neurology and Psychiatry]. 2018. № 2. P. 69—74 (in Russian). https://doi.org/10.17116/jnevro20181185269
- Matrosova Yu. V. Etiopatogenez, klinikai metody lecheniya ambliopii [Etiopathogenesis, clinical picture and methods of treatment of patients with amblyopia]. Bulletin of the Novosibirsk State University. Series: Biology. Vestnik NGU. Seriya: Biologiya, klinicheskaya medicina. 2012. V. 10. № 3. P. 193—202 (in Russian).
- Neroev V. V., Zueva M. V., Maglakelidze N. M. Patofiziol ogiya ambliopii: lateral’noe kolenchatoe telo I zritel’naya kora [Pathophysiology of amblyopia: lateral geniculate body and visual cortex]. Russian Ophthalmological Journal. 2015. № 1. P. 81—89 (in Russian).
- Somov E. E., Kononova N. E. K voprosu ob ambliopii, eyo zakonomernostyah I lechenii [On the issue of amblyopia, its patterns and treatment]. Russian ophthalmology of children. 2021. № 2. P. 15—21 (in Russian).
- Hacenko I. E., Rozhkova G. I., Gracheva M. A. Patogenez I opisaniya ambliopii. Chast’ 1. Prichiny evolyucii predstavlenij [Pathogenesis and descriptions of amblyopia. Part 1. Reasons for evolution of concepts]. Russian ophthalmology of children. 2023a. № 3. P. 37—47 (in Russian). 2023a. № 3. P. 37—47 (in Russian). https://doi.org/10.25276/2307—6658—2023—3—37—47
- Hacenko I. E., Rozhkova G. I., Gracheva M. A. Patogenez I opisaniya ambliopii. Chast’ 2. Analiz amblyopia. Part 2. Analysis of definitions]. Russian ophthalmology of children.2023b. № 3. P. 48—54 (in Russian). https://doi.org/10.25276/2307—6658—2023—3—48—54
- Barnes G. R., Hess R. F., Dumoulin S. O., Achtman R. L., Pike G. B. The cortical deficit in humans with strabismic amblyopia. J. Physiol (Lond.). 2001. V. 533. P. 281—297.
- Barnes G. R., Li X., Thompson B., Singh K. D., Dumoulin S. O., Hess R. F. Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes. Invest Ophthalmol Vis Sci. 2010. V. 51(3). P. 1432—1438. https://doi.org/10.1167/iovs.09—3931
- Birch E. E. Amblyopia and binocular vision. Prog. Retin. Eye Res. 2013. No. 33. P. 67—84. doi: 10.1016/j. preteyeres.2012.11.001. Epub. 2012. Nov 29. PMID: 23201436; PMCID: PMC3577063
- Brown H. D.H., Woodall R. E., Ritching R. E., Baseler H. F., Morland A. B. Using magnetic resonance imaging to assess visual deficits: a review. Ophthalmic and Physiological Optics. 2016. V. 36. P. 240—265. https://doi.org/10.1111/opo.12293
- Dale A. M., Fischl B., Sereno M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999. V. 9(2). P. 179—194. https://doi.org/ 10.1006/nimg.1998.0395
- Dai P., Zhang J., Wu J., Chen Z., Zou B., Wu Y., Wei X., Xiao M. Altered spontaneous brain activity of children with unilateral amblyopia: A resting state fMRI study. Neural Plasticity. 2019. V. 2019. P. 1—10. https://doi.org/10.1155/2019/3681430
- Desikan R. S., Segonne F., Fischl B., Quinn B. T., Dickerson B. C., Blacker D., Buckner R. L., Dale A. M., Maguire R. P., Hyman B. T., Albert M. S., Killiany R. J. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyrally based regions of interest. Neuroimage. 2006. V. 31(3). P. 968—980. https://doi. org/10.1016/j.neuroimage.2006.01.021
- Du H., Xie B., Yu Q., Wang J. Occipital lobe’s cortical thinning in ametropic amblyopia. Magn Reson Imaging. 2009. V. 27(5). P. 637—640.
- Fischl B., Sereno M. I., Dale A. M. Cortical surfacebased analysis. II: Inflation, flattening, and a surfacebased coordinate system. Neuroimage. 1999. V. 9(2). P. 195—207. https://doi.org/10.1006/nimg.1998.0396
- Fischl B., Salat D. H., Busa E., Albert M., Dieterich M., Haselgrove C., van der Kouwe A., Killiany R., Kennedy D., Klaveness S., Montillo A., Makris N., Rosen B., Dale A. M. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002. V. 33(3). P. 341—355. https://doi.org/10.1016/s0896—6273(02)00569-x
- Fischl B., Rajendran N., Busa E., Augustinack J., Hinds O., Yeo B. T., Mohlberg H., Amunts K., Zilles K. Cortical folding patterns and predicting cytoarchitecture. Cereb. Cortex. 2008. V. 18(8). P. 1973—1980. https://doi.org/10.1093/cercor/bhm225
- Hess R. F., Thompson B., Gole G., Mullen K. T. Deficient response from the lateral geniculate nucleus in humans with amblyopia. The European Journal of Neuroscience. 2009. V. 29(5). P. 1064—1070. https://doi.org/10.1111/j.1460—9568.2009.06650.x
- Hess R. F. The contrast dependence of the cortical fMRI deficit in amblyopia: a selective loss at higher contrasts. Hum. Brain Mapp. 2010. V. 31(8). P. 1233—1248. https://doi.org/doi: 10.1002/hbm.20931
- Hinds O. P., Rajendran N., Polimeni J. R., Augustinack J. C., Wiggins G., Wald L. L., Diana Rosas H., Potthast A., Schwartz E. L., Fischl B. Accurate prediction of V1 location from cortical folds in a surface coordinate system. Neuroimage. 2008. V. 15. No. 39(4). P. 1585—1599. https://doi. org/10.1016/j.neuroimage.2007.10.033
- Joly O., Franko E. Neuroimaging of amblyopia and binocular vision: a review. Frontiers in Integrative Neuro science. 2014. V. 8. P. 1—10. https://doi. org/10.3389/fnint.2014.00062
- Levi D. M. Rethinking amblyopia 2020. Vision Res. 2020. V. 176. P. 118—129. https://doi.org/10.1016/j. visres.2020.07.014
- Liang M., Xiao H., Xie B., Yin X., Wang J., Yang H. Morphologic changes in the visual cortex of patients with anisometropic amblyopia: a surface-based morphometry study. BMC Neurosci. 2019. V. 20. P. 1—7. https:// doi.org/10.1186/s12868—019—0524—6
- Lin X., Ding K., Liu Y., Yan X., Song S., Jiang T. Altered spontaneous activity in anisometropic amblyopia subjects revealed by resting-state FMRI. PLoS One. 2012. V. 7. Article e43373. https://doi. org/10.1371/journal.pone.0043373
- Liang M., Xie B., Yang H. Distinct patterns of spontaneous brain activity between children and adults with anisometropic amblyopia: a restingstate fMRI study. Graefes Arch Clin Exp Ophthalmol. 2016. V. 254. P. 569—576 https://doi.org/10.1007/s00417—015—3117—9
- Lv B., He H., Li X., Zhang Z., Huang W., Li M., Lu G. Structural and functional deficits in human amblyopia. Neurosci Lett. 2008. V. 437(1). P. 5—9.
- Mendola J. D., Ian P. Conner I. P., Roy A., Chan S. — T., Schwartz T. L., Odom J. V., Kenneth K., Kwong K. K. Voxel-Based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Human Brain Mapping. 2005. V. 25(2). P. 222—236. https://doi.org/10.1002/hbm.20109
- Mendola J. D., Lam J., Rosenstein M., Lewis L. B., Shmuel A. Partial correlation analysis reveals abnormal retinotopically organized functional connectivity of visual areas in amblyopia. Neuroimage Clin. 2018. V. 18. P. 192—201. https://doi. org/10.1016/j.nicl.2018.01.022
- Miki A., Liu G. T., Goldsmith Z. G., Liu C. — S.J., Haselgrove J. C. Decreased activation of the lateral geniculate nucleus in a patient with anisometric amblyopia demonstrated by magnetic resonance imaging. Opththalmologia. 2003. V. 217(5). P. 365—369. https://doi.org/10.1159/000071353
- Muckli I., Kiess S., Tonhausen W., Singer W., Goebel R., Sireteanu R. Cerebral correlates of impaired grating perception in individual, psychophysically assessed human amblyopes. Vision Res. 2006. V. 46(4). P. 506—526. https://doi.org/10.1016/j.visres.2005.10.014
- Plessen K. J., Hugdahl K., Bansal R., Hao X., Peterson B. S. Sex, age, and cognitive correlates of asymmetries in thickness of the cortical mantle across the life span. J. Neurosci. 2014. V. 30; 34(18). P. 6294—6302. https://doi.org/10.1523/JNEUROSCI.3692—13.2014
- Peng J., Yao F., Li Q., Ge Q., Shi W., Su T., Tang L., Pan Y., Liang R., Zhang L., Shao Y. Alternations of interhemispheric functional connectivity in children with strabismus and amblyopia: a resting-state fMRI study. Scientifc Reports. 2021. V. 11. P. 15059. https://doi.org/10.1038/s41598—021—92281—1
- Ségonne F., Dale A. M., Busa E., Glessner M., Salat D., Hahn H. K., Fischl B. A hybrid approach to the skull stripping problem in MRI. Neuroimage. 2004. V. 22(3). P. 1060—1075. https://doi.org /10.1016/j. neuroimage.2004.03.032. PMID: 15219578
- Shaw P., Lalonde F., Lepage C., Rabin C., Eckstrand K., Sharp W., Greenstein D., Evans A., Giedd J. N., Rapoport J. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2009. V. 66(8). P. 888—896. https://doi.org/10.1001/archgenpsychiatry.2009.103
- Spiegel D. P., Byblow W. D., Hess R. F., Thompson B. Anodal transcranial direct current stimulation transiently improves contrast sensitivity and normalizes visual cortex activity in individuals with amblyopia. Neurorehabilitation and Neural Repair. 2013. V. 27(8). P. 760—769. https://doi.org/10.1177/1545968313491006
- Toosy A. T., Werring D. J., Plant G. T., Bullmore E. T., Miller D. H., Thompson A. J. Asymmetrical activation of human visual cortex demonstrated by functional MRI with monocular stimulation. Neuroimage. 2001. V. 14(3). P. 632—641. https://doi.org/10.1006/nimg.2001.0851
- Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002. V. 15(1). P. 273—289. https://doi.org/10.1006/nimg.2001.0978
- Wang G., Liu L. Amblyopia: progress and promise of functional magnetic resonance imaging. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2023. V. 261(5). P. 1229—1246. https://doi.org/10.1007/s00417—022—05826-z
- Wang H., Crewther S. G., Liang M., Laycock R., Yu T., Alexander B. Impaired activation of visual attention network for motion salience is accompanied by reduced functional connectivity between frontal eye fields and visual cortex in strabismic amblyopes. Front. Hum. Neurosci. 2017. V. 11. P. 1—13. https://doi.org/10.3389/fnhum.2017.00195
- Wang H., Liang M., Crewther S. G., Yin Z., Wang J., Crewther D. P., Yu T. Functional deficits and structural changes associated with visual attention network during resting state in adult strabismic and anisotropic amblyopes. Frontiers in Human Neuroscience. 2022. V. 16. P. 862703. https://doi.org/10.3389/fnhum.2022.862703
- Xiao J. X., Xie S., Ye J. T., Liu H. H., Gan X. L., Gong G. L., Jiang X. X. Detection of abnormal visual cortex in children with amblyopia by voxelbased morphometry. Am J. Ophthalmol. 2007. V. 143(3). P. 489—493. https://doi.org/10.1016/j.ajo.2006.11.039