• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Non-invasive recording of electroretinogram from both compound eyes in the cockroach Periplaneta americana L. in response to light stimuli

© 2024 E. S. Novikova, L. A. Astakhova, A. Yu. Rotov, M. I. Zhukovskaya

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences 104223, St. Petersburg, Thorez Ave, 44, Russia

Received 22 Nov 2023

The paper presents an original method of non-invasive registration of electroretinogram from both compound eyes of an insect. The method demonstrated high reliability and repeatability of the results. Using this method, it was shown that the magnitude of the light responses obtained from mutant cockroaches devoid of screening pigment, pearl, was about 4 times greater than those of wild-type insects. The time to peak of the response decreased with increasing light intensity, both for shortwavelength and long-wavelength stimuli. The pearl cockroaches exhibited a faster time to peak response than wild-type cockroaches; the results of covariance analysis indicate that these differences cannot be fully explained by an increase in the number of photons reaching the photoreceptor membranes and suggest additional differences in the compound eye physiology of mutant and wild-type insects. The positive voltage wave after the end of light stimulation depends on light intensity and reflects hyperpolarization of receptor cells. The photovoltaic effect, which distorts the amplitude and the shape of the response can be eliminated by using a gold wire as a recording electrode.

Key words: electroretinogram, cockroach, Periplaneta, compound eyes, insect vision

DOI: 10.31857/S0235009224010048

Cite: Novikova E. S., Astakhova L. A., Rotov A. Yu., Zhukovskaya M. I. Neinvazivnaya registratsiya elektroretinogrammy ot oboikh slozhnykh glaz u tarakana periplaneta americana l. v otvet na svetovye stimuly [Non-invasive recording of electroretinogram from both compound eyes in the cockroach periplaneta americana l. in response to light stimuli]. Sensornye sistemy [Sensory systems]. 2024. V. 38(1). P. 52–64 (in Russian). doi: 10.31857/S0235009224010048

References:

  • Gribakin F. G. Mehanizmy fotorecepcii nasekomyh [Mechanisms of photoreception in insects]. Leningrad. Nauka, 1981. 213 p. (in Russian).
  • Butler R. The anatomy of the compound eye of Periplaneta americana L. 1. General features J. Comp. Physiol. 1973a. V. 83. P. 223–238. https://doi.org/10.1007/BF00693676
  • Butler R. The anatomy of the compound eye of Periplaneta americana L. 2. Fine structure. J. Comp. Physiol. 1973b. V. 83. P. 239–262. https://doi.org/: 10.1007/BF00693677
  • Chen B., Meinertzhagen I. A., Shaw S. R. Circadian rhythms in light-evoked responses of the fly’s compound eye, and the effects of neuromodulators 5-HT and the peptide PDF. J. Comp. Physiol. A. 1999. V. 185. P. 393–404. https://doi.org/: 10.1007/s003590050400
  • Cronin T. W., Järvilehto M., Weckström M., Lall A. B. Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J. Comp. Physiol. A. 2000. V. 186. P. 1–12. https://doi.org/10.1007/s003590050001
  • Crook D. J., Hull-Sanders H.M., Hibbard E. L., Mastro V. C. A comparison of electrophysiologically determined spectral responses in six subspecies of Lymantria. J. Econ. Entomol. 2014. V. 107. P. 667–674. https://doi.org/10.1603/EC13464
  • Crook D. J., Chiesa S. G., Warden M. L., Nadel H., Ioriatti C., Furtado M. Electrophysiologically determined spectral responses in Lobesia botrana (Lepidoptera: Tortricidae). J. Econ. Entomol. 2022. V. 115(5). P. 1499–1504. https://doi.org/10.1093/jee/toac124
  • Dolph P., Nair A., Raghu P. Electroretinogram recordings of Drosophila. Cold Spring Harb Protoc. 2011. V. 2011(1). P. pdb-prot5549. https://doi.org/10.1101/pdb.prot5549
  • Fabietti M., Mahmud M., Lotfi A., Kaiser M. S., Averna A., Guggenmos D. J., Nudo R. J., Chiappalone M., Chen J. SANTIA: a Matlab-based open-source toolbox for artifact detection and removal from extracellular neuronal signals. Brain Informatics. 2021. V. 8. P. 1–19. https://doi.org/10.1186/s40708–021–00135–3
  • French A. S., Meisner S., Liu H., Weckström M., Torkkeli P. H. Transcriptome analysis and RNA interference of cockroach phototransduction indicate three opsins and suggest a major role for TRPL channels. Frontiers in physiology. 2015. V. 6. P. 207. https://doi.org/10.3389/fphys.2015.00207
  • Frolov R. V., Severina I., Novikova E., Ignatova I. I., Liu H., Zhukovskaya M., Torkkeli P. H., French A. S. Opsin knockdown specifically slows phototransduction in broadband and UV-sensitive photoreceptors in Periplaneta americana. J. Comp. Physiol. A. 2022. V. 208(5–6). P. 591–604. https://doi.org/10.1007/s00359-022-01580-z
  • Goriachenkov A. A., Rotov A. Y., Firsov M. L. Developmental dynamics of the functional state of the retina in mice with inherited photoreceptor degeneration. Neuroscience and Behavioral Physiology. 2021. V. 51. P. 807–815. https://doi.org/10.1007/s11055-021-01137-8
  • Gribakin F. G. Photoreceptor optics of the honeybee and its eye colour mutants: the effect of screening pigments on the long-wave subsystem of colour vision. J. Comp. Physiol. A. 1988. V. 164. P. 123–140. https://doi.org/10.1007/BF00612726
  • Gribakin F. G., Ukhanov K. Y. Is the white eye of insect eye-color mutants really white? J. Comp. Physiol. A. 1990. V. 167. P. 715–721. https://doi.org/10.1007/BF00192666
  • Gribakin F. G., Alekseyev Y. N., Ukhanov K. Y. Spectral sensitivity of white-eyed insect mutants in the UV, blue and green. Journal of Photochemistry and Photobiology B: Biology. 1996. V. 35(1–2). P. 13–18. https://doi.org/10.1016/1011-1344(96)07313-7
  • Hochstrate P. Lanthanum mimicks the trp photoreceptor mutant of Drosophila in the blowfly Calliphora. J. Comp. Physiol. A. 1989. V. 166. P. 179–187. https://doi.org/10.1007/BF00193462
  • Jansonius N. M. Properties of the sodium pump in the blowfly photoreceptor cell. J. Comp. Physiol. 1990. V. 167. P. 461–467. https://doi.org/10.1007/BF00190816
  • Kelly K. M., Mote M. I. Avoidance of monochromatic light by the cockroach Periplaneta americana. Journal of insect physiology. 1990. V. 36(4). P. 287–291. https://doi.org/10.1016/0022-1910(90)90113-T
  • Kugel M. The time course of the electroretinogram of compound eyes in insects and its dependence on special recording conditions. Journal of Experimental Biology. 1977. V. 71(1). P. 1–6. https://doi.org/10.1242/jeb.71.1.1.
  • Mikulovic S., Pupe S., Peixoto H. M., Do Nascimento G. C., Kullander K., Tort A. B., Leão R. N. On the photovoltaic effect in local field potential recordings. Neurophotonics. 2016. V. 3(1). P. 015002. https://doi. org/10.1117/1.NPh.3.1.015002
  • Mote M. I., Goldsmith T. H. Spectral sensitivities of color receptors in the compound eye of the cockroach Periplaneta. J. Exp. Zool. 1970. V. 173. P. 137–145. https://doi.org/10.1002/jez.1401730203
  • Popkiewicz B., Prete F. R. Macroscopic characteristics of the praying mantis electroretinogram. Journal of insect physiology. 2013. V. 59(8). P. 812–823. https://doi.org/10.1016/j.jinsphys.2013.05.002
  • Ross M. H., Cochran G., Smyth D. T. Eye-color mutations in the American cockroach, Periplaneta americana. Ann. Entomol. Soc. Am. 1964. V. 57. P. 790–792. https://doi.org/10.1093/aesa/57.6.790
  • Saari P., Immonen E. V., Kemppainen J., Heimonen K., Zhukovskaya M., Novikova E., French A. S., Torkkeli P. H., Liu H., Frolov R. V. Changes in electrophysiological properties of photoreceptors in Periplaneta americana associated with the loss of screening pigment. J. Comp. Physiol. A. 2018. V. 204. P. 915–928. https://doi.org/10.1007/s00359-018-1290-0.
  • Schirmer A. E., Prete F. R., Mantes E. S., Urdiales A. F., Bogue W. Circadian rhythms affect electroretinogram, compound eye color, striking behavior and locomotion of the praying mantis Hierodula patellifera. Journal of Experimental Biology. 2014. V. 217(21). P. 3853–3861. https://doi.org/10.1242/jeb.102947
  • Sieving P. A., Fishman G. A., Maggiano J. M. Corneal wick electrode for recording bright flash Zhukovskaya M. I. Modulation by octopamine of olfactory responses to nonpheromone odorants in the cockroach, Periplaneta americana L. Chemical senses. 2012. V. 37(5). P. 421–429. https://doi.org/10.1093/chemse/bjr121 electroretinograms and early receptor potentials. Archives of Ophthalmology. 1978. V. 96(5). P. 899–900. https://doi.org/10.1001/archopht.1978.03910050501024
  • Wu J., Tian Y., Dong W., Han J. Protocol for electroretinogram recording of the Drosophila compound eye. STAR protocols. 2022. V. 3(2). P. 101286. https://doi.org/10.1016/j.xpro.2022.101286
  • Zhukovskaya M. I. Modulation by octopamine of olfactory responses to nonpheromone odorants in the cockroach, Periplaneta americana L. Chemical senses. 2012. V. 37(5). P. 421–429. https://doi.org/10.1093/chemse/bjr121щш9лдшщл