The purpose of the study was to determine the impact of the presence of visual feedback on the quality of user
experience with a number of human-computer interfaces, as well as the process of mastering the interfaces. As a result
of the work, the features of the generation of control commands by operators of ergatic systems using an oculographic
interface, interfaces for controlling hand movements and head movements were assessed. In the absence of visual
feedback, users relied on motor memory formed during the learning process, and in the case of head control, on data from
the vestibular analyzer. The presence of visual feedback was found to be important for accurate command generation in
all cases. However, when controlling the head and eyes, the presence of visual feedback led to a greater deviation from
the ideal trajectory and an increase in the distance that the cursor traveled before reaching the goal. Localization of
the target position did not have a significant effect on the performance of the operator interface, regardless of the
presence of visual feedback. Analysis of typical reactions in all experiments made it possible to identify three types
of control, differing for eye and head movements, but not for hand movements in the ergatic system mode. Types 1 and 2
exhibited more errors compared to type 3, and the number of errors varied between them, especially for hand control. The
results obtained can be used in the development of promising interfaces for ergatic systems, including the determination
of the necessary visual feedback components for this class of technical devices.
Key words:
sensory feature, operator, control, ergatic system, visual feedback, human–computer interface, infrared oculographic
interface
DOI: 10.31857/S0235009224010058
Cite:
Ya. A. Turovsky, Alekseev V. Yu., Tokarev R. A.
Sensornye osobennosti operatorov v zadachakh upravleniya ergaticheskimi sistemami pri otsutstvii zritelnoi obratnoi svyazi
[Individual and typological features of motor memory in problems of control of ergacy systems in the absence of visual feedback].
Sensornye sistemy [Sensory systems].
2024.
V. 38(1).
P. 66–78 (in Russian). doi: 10.31857/S0235009224010058
References:
- Korneev A. A., Kurganskii A. V. Vnutrennyaya reprezentatsiya serii dvizhenii pri vosproizvedenii staticheskogo risunka i traektorii dvizhushchegosya ob”ekta [Internal representation of a series of movements in the reproduction of a static pattern and the trajectory of a moving object]. Zurnal Vucshey Nervnoi Deytelynosti I. P. Pavlova [I. P. Pavlov Journal of Higher Nervous Activity]. 2013. V. 63(4). P. 437–450 (in Russian). https://doi.org/10.7868/S0044467713040060
- Mel’k A. Yu. Obzor interfeisa mozg–komp’yuter [Brain computer interface overview]. Nauchnyi aspekt. 2020. V. 5(3). P. 704–707 (in Russian).
- Orlov I. V., Stolbkov Yu.K., Gerasimenko Yu. P. Upravlenie ustroistvami dlya dvigatel’noi reabilitatsii cheloveka [Managing Devices for Human Movement Rehabilitation]. Fiziologiy cheloveka [Fiziologiya cheloveka]. 2018. V. 44(6). P. 93–103 (in Russian). https://doi.org/10.1134/S0131164618050120
- Polubarov A. A., Kashin D. A., Abdrakhmanov D. F. Primenenie algoritmov mashinnogo obucheniya v interfeise mozg–komp’yuter na volne p300 [Application of machine learning algorithms in the brain-computer interface on the p300 wave]. Voprosy ustoichivogo razvitiya obshchestva. 2022. (8). P. 929–941 (in Russian). https://doi.org/10.34755/IROK.2022.26.86.021
- Solodov A. V. Emotsii v protsessakh pamyati, kognitivnykh protsessakh i obrazovanii [Emotions in memory processes, cognitive processes and education]. European Research: sbornik statei XVI Mezhdunarodnoi nauchno-prakticheskoi konferentsii [European Research: collection of articles of the XVI International Scientific and Practical Conference]. Penza. Mezhdunaronyi tsentr nauchnogo sotrudnichestva «Nauka i Prosveshchenie». 2018. P. 190–194 (in Russian).
- Turitsyn M. I., Anokhin A. N., Volovod D. A., Gerasimchuk I. S., Mashkovtseva R. I. Issledovanie kharakteristik i vozmozhnostei primeneniya byudzhet nogo aitrekera v ergonomicheskikh zadachakh [Study of the characteristics and possibilities of using a budget eye-tracker in ergonomic tasks]. Chelovecheskii faktor v slozhnykh tekhnicheskikh sistemakh i sredakh [Human factor in complex technical systems and environments]. Saint Petersburg. 2016. P. 107–113 (in Russian).
- Turovskii Ya.A., Alekseev V. Yu. Sravnenie podkhodov k otslezhivaniyu raspredeleniya vnimaniya operatorov s ispol’zovaniem okulograficheskikh intrefeisov [Comparison of approaches to tracking the distribution of attention of operators using oculographic interfaces]. Software Engineering. 2023. V. 14(3). P. 137–145 (in Russian). https://doi.org/10.17587/ prin.14.137–145
- Turovskiy Ya.A., Alekseev A. V., Ippolitov Yu. A. Informatsionnaya sistema dopolnitelnogo kanala obratnoy svyazi dlya videookulograficheskikh interfeysov chelovek-kompyuter [Information system of additional channel of feedback for video-oculographic interfaces human-computer.]. Journal of new medical technologies. 2017. V. 24 (2). P. 152–157 (in Russian). https://doi.org/10.12737/article_5947d43a55d805.86585568
- Turovskii Ya.A., Alekseev V. Yu., Muradova L. G., Mironkin A. P. Osobennosti generatsii komand dlya okulograficheskikh interfeisov v usloviyakh vestibulyarnykh vozdeistvii [Features of command generation for oculographic interfaces under conditions of vestibular influences]. Sensornye Sistemy [Sensory Systems]. 2023. V. 37(1). P. 49–59 (in Russian). https://doi.org/10.31857/S0235009223010080
- Turovskii Yа.A., Boronnikov A. I. Vliyanie obratnoi svyazi na kharakteristiki osvoeniya komand, generiruemykh v zadachakh miografi cheskikh interfeisov [Influence of feedback on the characteristics of mastering commands generated in tasks of myographic interfaces]. Technologies of Living Systems. 2020. V. 17(2). P. 39–45 (in Russian). https://doi.org/10.18127/j20700997-202002-04
- Turovskii Yа.A., Borzunov S. V., Vakhtin A. A. Algoritm otsenki rezul’tatov statisticheskogo analiza dannykh biomeditsinskoi prirody v usloviyakh ehffekta mnozhestvennykh sravnenii [Algorithm for evaluating the results of statistical analysis of biomedical data under the conditions of the result of multiple comparisons]. Software Engineering. 2021. V. 1(9). P. 470–474 (in Russian). https://doi.org/10.17587/prin.12.470–474
- Turovskii Ya.A., Borzunov S. V., Danilova A. V., Glagoleva E. P. Dinamika neproizvol’nogo formirovaniya korrelyatsionnykh patternov EEG po mekhanizmu biologicheskoi obratnoi svyazi [Dynamics of involuntary formation of EEG correlation patterns by the biofeedback mechanism]. Ulyanovsk Medicobiological Journal. 2020. V. 2. P. 90–99 (in Russian). https://doi.org/10.34014/2227-1848-2020-2-90-99
- Alonso R., Causse M., Vachon F., Parise R., Dehais F., Terrier P. Evaluation of head-free eye tracking as an input device for air traffic control. Ergonomics. 2013. V. 56(2). P. 246–255. https://doi.org/10.1080/00140 139.2012.744473
- Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B. 1995. V. 57(1). P. 289–300. https://doi.org/10.2307/2346101
- Cohen M. H., Giangola J. P., Balogh J. Voice User Interface Design. Addison Wesley Publisher. 2004. 368 p.
- Eisma Y., Borst C., Paassen R., Winter J. Augmented Visual Feedback: Cure or Distraction? Human Factors. 2021. V. 63(7). P. 1156–1168. https://doi.org/10.1177/0018720820924602
- EHampton L. Refrexes. https://www.physio-pedia.com/Reflexes
- Kim B., Kim M., Jo S. Quadcopter flight control using a low-cost hybrid interface with EEG-based classification and eye tracking. Computers in Biology and Medicine. 2014. V. 51. P. 82–92. https://doi.org/10.1016/j.compbiomed.2014.04.020
- Toreini P., Langner M., Maedche A. Using Eye-Tracking for Visual Attention Feedback. Information Systems and Neuroscience. Lecture Notes in Information Systems and Organisation. Cham. Springer, 2020. V. 32. https://doi.org/10.1007/978-3-030-28144-1_29
- Wolpaw J., Wolpaw E. W. Brain-computer interfaces: principles and practice. Oxford University Press, 2012. P. 424.
- Yeo I. K., Johnson R. A. A new family of power transformations to improve normality or symmetry. Biometrika. 2000. V. 87(4). P. 954–959. https://doi.org/10.1093/biomet/87.4.954