• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Рroblems of diagnostics of dysfunctions of the olfactory analyzer of laboratory animals on the basis of behavioral and electrophysiological methods of research

© 2024 A. V. Gorskaya, D. S. Vasilev

Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS 194223, Saint Petersburg, Thorez, 44, Russia

Received 24 Nov 2023

Olfactory impairment (decreased acuity, impaired adequate identification of odorants) reduces the quality of life of patients and can be a symptom of a wide range of pathologies of the organism, in particular neurodegenerative processes in the brain. Quantitative measurement of olfactory acuity is necessary for diagnostics of olfactory dysfunctions, monitoring the dynamics of olfaction after pharmacological or surgical treatment. The searching for optimal methods of analyzing olfactory thresholds on animal models of human diseases accompanied by anosmia and comparing them with those in humans seems to be especially urgent problem at the moment. This is necessary for the selection of a valid animal model for the evaluation of new drugs and development the therapy for a wide range of pathologies. The review analyzes publications devoted to the study of diseases accompanied by anosmia or hyposmia, their zootropic models, and methods of olfactory function assessment. Models for COVID19, Alzheimer’s disease, Parkinson’s disease, diabetes types (1 and 2 type), Kalman syndrome, and BardetBiedl syndrome, for which olfactory dysfunction and/or defects of olfactory system are present, were analyzed. The review notes the paucity of data on the measurement of olfactory thresholds in model animals.

Key words: anosmia, Alzheimer’s disease, Parkinson’s disease, diabetes, COVID-19

DOI: 10.31857/S0235009224010017

Cite: Gorskaya A. V., Vasilev D. S. Problemy diagnostiki disfunktsii obonyatelnogo analizatora laboratornykh zhivotnykh na osnove povedencheskikh i elektrofiziologicheskikh metodov issledovaniya [Рroblems of diagnostics of dysfunctions of the olfactory analyzer of laboratory animals on the basis of behavioral and electrophysiological methods of research ]. Sensornye sistemy [Sensory systems]. 2024. V. 38(1). P. 3–29 (in Russian). doi: 10.31857/S0235009224010017

References:

  • Gvazava I. G., Karimova M. V., Vasil’ev A.V., Voroteljak E. A. Saharnyj diabet 2 tipa: osobennosti patogeneza i jeksperimental’nye modeli na gryzunah [Type 2 diabetes mellitus: pthogenic features and experimental models in rodents]. Acta Naturae [Acta Naturae]. 2022. V. 14(3). P. 57—68 (in Russian). https://doi.org/10.32607/actanaturae.11751
  • Dubrovskaja N. M., Vasil’ev D.S., Tumanova N. L., Alekseeva O. S., Nalivaeva N. N. Prenatal’naya gipoksiya narushaet obonyatel’nuyu funkciyu v postnatal’nom ontogeneze krys [Prenatal hypoxia disturbs olfactory function in postnatal ontogenesis of rats]. Zhurnal vysshej nervnoj dejatel’nosti im. I. P. Pavlova [I. P. Pavlov Journal of Higher Nervous Activity]. 2021. V. 71(3). P. 415—427 (in Russian). https://doi.org/10.31857/S0044467721030035
  • Iptyshev A. M., Gorina Ja.V., Lopatina O. L., Komleva Ju.K., Salmina A. B. Jeksperimental’nye modeli bolezni Al’cgejmera: preimushhestva i nedostatki [Experimental models of Alzheimer’s disease: advantages and disadvantages]. Sibirskoe medicinskoe obozrenie [Siberian Medical Review]. 2016. V. 4(100). P. 5—21 (in Russian).
  • Morozova S. V., Savvateeva D. M., Petrova E. I. Obonjatel’nye rasstrojstva u pacientov s nejrodegenerativnymi zabolevanijami [Olfactory disorders in patients with neurodegenerative diseases]. Nevrologicheskij zhurnal [Neurological journal]. 2014. V. 19(1). P. 4—8 (in Russian).
  • Kiroj V. N., Kosenko P. O., SHaposhnikov P.D., Aslanyan E. V., Saevskij A. I. Izmenenie spektral’nyh harakteristik i urovnya kogerentnosti fokal’noj aktivnosti obonyatel’noj lukovicy krysy v dinamike ksilazin-tiletaminzolazepamovogo narkoza [Changes in the spectral characteristics and level of coherence of the focal activity of the rat olfactory bulb in the dynamics of xylazine-tiletaminzolazepam anesthesia] Sensornye Sistemy [Sensory systems]. 2023. V. 37(1). P. 65—77 (in Russian). https://doi.org/10.31857/ S0235009223010043
  • Nosulia E. V., Kim I.A., Borisenko G.N., Chernykh N. M., Shpakova E. A. Obonyatel’naya disfunkciya v praktike otorinolaringologa: analiz simptomov pri razlichnyh patologicheskih sostoyaniyah i u beremennyh [Olfactory dysfunction encountered in the practical work of the otorhinolaryngologist: the analysis of symptoms of different pathological conditions and in the pregnant women]. Vestnik OtoRino-Laringologii [Bulletin of Otorhinolaryngology]. 2013. V. 78(4). P. 72—77 (in Russian).
  • Pashkevich S. G., Eremenko Ju.E., Mironova G. P., Gladkova Zh.A., Andrianova T. D., Tokal’chik D.P., Rjabceva S. N., Derevjanko I. A., Stukach Ju.P., Kul’chickij V. A. Jeksperimental’naja model’ aspirinovoj triady [Experimental model of the Samter’s triad]. Otorinolaringologija. Vostochnaja Evropa [Otorhinolaryngology. Eastern Europe]. 2015. V. 3. P. 58—62 (in Russian).
  • Tiganov A. S., Snezhnevskij A. V., Orlovskaja D. D. i dr. Rukovodstvo po psihiatrii T. 1 [Guide to Psychiatry V. 1] Moscow. Medicina, 1999. 712 p. (in Russian).
  • Abrams K. L., Ward D. A., Sabiniewicz A., Hummel T. Olfaction evaluation in dogs with sudden acquired retinal degeneration syndrome. Veterinary Ophthalmology. 2023. Epub ahead of print. PMID: 37399129. https://doi.org/10.1111/vop.13121
  • Andrea X. P., Joceline L. M. Jose O. F. Jose P. O. H uman Nasal Epithelium Damage as the Probable Mechanism Involved in the Development of PostCOVID-19 Parosmia. Indian Journal of Otolaryngology and Head & Neck Surgery. 2023. V. 75(1). P. 458—464. https://doi.org/10.1007/s12070—023—03559-x
  • Aragao M. F.V.V., Leal M. C., Filho O. Q.C., Fonseca T. M., Aragao L. V., Leao M. R.V.C., Valenca M. A., Andrade P. H.P., Aragao J. P.V., Neto S. S.C., Valenca M. M. Comparative study — the impact and profile of COVID-19 patients who are indicated for neuroimaging: vascular phenomena are been found in the brain and olfactory bulbs. Medrxiv. 2021. P. 2020.12.28.20248957. https://doi.org/10.1101/2020.12.28.20248957
  • Arbuckle E. P., Smith G. D., Gomez M. C., Lugo J. N. Testing for odor discrimination and habituation in mice. Journal of Visualized Experiments. 2015. No. 9. P. e52615. https://doi.org/10.3791/52615
  • Aydin S., Aksoy A., Aydin S., Kalayci M., Yilmaz M., Kuloglu T., Citil C., Catak Z. Today’s and yesterday’s of pathophysiology: biochemistry of metabolic syndrome and animal models. Nutrition. 2014. V. 30(1). P. 1—9. https://doi.org/ 10.1016/j.nut.2013.05.013
  • Baum M. J. Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals. Frontiers in neuroanatomy. 2012. V. 6. P. 20. https://doi.org/10.3389/fnana.2012.00020
  • Beshel J., Kopell N., Kay L. M. Olfactory bulb gamma oscillations are enhanced with task demands. Journal of Neuroscience. 2007. V. 27(31). P. 8358—8365. https://doi.org/10.1523/JNEUROSCI.1199—07.2007
  • Boesveldt S., Postma E. M., Boak D., Welge-Luessen A., Schöpf V., Mainland J. D., Martens J., Ngai J., Duffy V. B. Anosmia — a clinical review. Chemical senses. 2017. V. 42(7). P. 513—523. https://doi.org/10.1093/chemse/bjx025
  • Borghammer P., Just M. K., Horsager J., Skjærbæk C., Raunio A., Kok E. H., Savola S., Murayama S., Saito Y., Myllykangas L., Van Den Berge N. A postmortem study suggests a revision of the dual-hit hypothesis of Parkinson’s disease. NPJ Parkinson’s Disease. 2022. V. 8(1). P. 166. https://doi.org/10.1038/s41531—022—00436—2
  • Braak H., Del Tredici K., Rüb U., de Vos R. A., Jansen Steur E. N., Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of aging. 2003. V. 24(2). P. 197—211. https://doi. org/10.1016/S0197—4580(02)00065—9
  • Braak H., Braak E. Frequency of stages of Alzheimerrelated lesions in different age categories. Neurobiology of aging. 1997. V. 18(4). P. 351—357. https://doi.org/10.1016/S0197—4580(97)00056—0
  • Braak H., Braak E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica. 1991. V. 82(4). P. 239—259. https://doi.org/10.1007/BF00308809
  • Braak H., Braak E. The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neuroscience research. 1992. V. 15(1—2). P. 6—31. https://doi.org/10.1016/0168—0102(92)90014—4
  • Bryche B., St Albin A., Murri S., Lacôte S., Pulido C., Ar Gouilh M., Lesellier S., Servat A., Wasniewski M., Picard-Meyer E., Monchatre-Leroy E., Volmer R., Rampin O., Le Goffic R., Marianneau P., Meunier N. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain, behavior, and immunity. 2020. V. 89. P. 579—586. https://doi.org/10.1016/j.bbi.2020.06.032
  • Butowt R., Bilinska K., von Bartheld C. S. Olfactory dysfunction in COVID-19: New insights into the underlying mechanisms. Trends in Neurosciences. 2023. V. 46(1). P. 75—90. https://doi.org/10.1016/j. tins.2022.11.003
  • Cave J. W., Fujiwara N., Weibman A. R., Baker H. Cytoarchitectural changes in the olfactory bulb of Parkinson’s disease patients. NPJ Parkinson’s disease. 2016. V. 2(1). P. 1—3. https://doi.org/10.1038/npjparkd.2016.11
  • Christen-Zaech S., Kraftsik R., Pillevuit O., Kiraly M., Martins R., Khalili K., Miklossy J. Early olfactory involvement in Alzheimer’s disease. Canadian Journal of Neurological Sciences. 2003. V. 30(1). P. 20—25. https://doi.org/10.1017/s0317167100002389
  • Chu H., Chan J. F.W., Yuen K. Y. Animal models in SARS-CoV-2 research. Nature Methods. 2022. V. 19(4). P. 392—394. https://doi.org/10.1038/s41592—022—01447-w
  • Cisneros-Larios B., Elias C. F. Sex differences in the coexpression of prokineticin receptor 2 and gonadal steroids receptors in mice. Frontiers in Neuroanatomy. 2023. V. 16. P. 1057727. https://doi.org/10.3389/fnana.2022.1057727
  • Claire M., Christine, F. N., Terry L. J., Left hippocampal volume loss in Alzheimer’s disease is reflected in performance on odor identification: a structural MRI study. Journal of the International Neuropsychological Society. 2003. V. 9(3). P. 459—471. https://doi.org/10.1017/S1355617703930116
  • Cooper K. W., Brann D. H., Farruggia M. C., Bhutani S., Pellegrino R., Tsukahara T., Weinreb C., Joseph P. V., Larson E. D., Parma V., Albers M. W., Barlow L. A., Datta S. R., Di Pizio A. COVID-19 and the chemical senses: supporting players take center stage. Neuron. 2020. V. 107 (2). P. 219—233. https://doi.org/10.1016/j.neuron.2020.06.032
  • Coronas-Samano G., Ivanova A. V., Verhagen J. V. The habituation/cross-habituation test revisited: guidance from sniffing and video tracking. Neural plasticity. 2016. V. 2016. https://doi.org/10.1155/2016/9131284
  • David P., Malkova A. Anosmia in COVID-19 and postCOVID syndrome Autoimmunity, COVID-19, PostCOVID19 Syndrome and COVID-19 Vaccination. Academic Press. 2023. P. 487—494. https://doi.org/10.1016/B978—0—443—18566—3.00010—4
  • Davidson T. M., Murphy C., Jalowayski A. A. Smell impairment: can it be reversed? Postgraduate medicine. 1995. V. 98(1). P. 107—118. https://doi.org/10.1080/00325481.1995.11946020
  • Davis R. E., Swiderski R. E., Rahmouni K., Nishimura D. Y., Mullins R. F., Agassandian K., Philp A. R., Searby C. C., Andrews M. P., Thompson S., Berry C. J., Thedens D. R., Yang B., Weiss R. M., Cassell M. D., Stone E. M., Sheffield V. C. A knockin mouse model of the Bardet–Biedl syndrome 1M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proceedings of the National Academy of Sciences. 2007. V. 104(49). P. 19422—19427. https://doi.org/10.1073/pnas.0708571104
  • Deer J., Koska J., Ozias M., Reaven P. Dietary models of insulin resistance. Metabolism. 2015. V. 64(2). P. 163—171. https://doi.org/10.1016/j.metabol.2014.08.013
  • Del Tredici K., Rüb U., De Vos R. A., Bohl J. R., Braak H. Where does Parkinson disease pathology begin in the brain? Journal of Neuropathology & Experimental Neurology. 2002. V. 61(5). P. 413—426. https://doi.org/10.1093/jnen/61.5.413
  • Di Lullo A. M., Iacotucci P., Comegna M., Amato F., Dolce P., Castaldo G., Cantone E., Carnovale V., Iengo M. Cystic fibrosis: the sense of smell. American Journal of Rhinology & Allergy. 2020. V. 34(1). P. 35—42. https://doi.org/10.1177/1945892419870450
  • Di Schiavi E., Andrenacci D. Invertebrate models of kallmann syndrome: molecular pathogenesis and new disease genes. Current genomics. 2013. V. 14(1). P. 2—10. https://doi.org/10.2174/138920213804999174
  • Doorduijn A. S., de van der Schueren M. A.E., van de Rest O., de Leeuw F. A., Fieldhouse J. L.P., Kester M. I., Teunissen C. E., Scheltens P., van der Flier W. M., Visser M., Boesveldt S. Olfactory and gustatory functioning and food preferences of patients with Alzheimer’s disease and mild cognitive impairment compared to controls: the NUDAD project. Journal of Neurology. 2020. V. 267(1). P. 144—152. https://doi.org/10.1007/s00415—019—09561—0
  • Dotan A., Muller S., Kanduc D., David P., Halpert G., Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmunity reviews. 2021. V. 20(4). P. 102792. https://doi.org/10.1016/j.autrev.2021.102792
  • Doty R. L. Office procedures for quantitative assessment of olfactory function. American journal of rhinology. 2007. V. 21(4). P. 460—473. https://doi.org/10.2500/ajr.2007.21.3043
  • Dutta D., Karthik K., Holla V. V., Kamble N., Yadav R., Pal P. K., Mahale R. R. Olfactory bulb volume, olfactory sulcus depth in Parkinson’s disease, atypical parkinsonism. Movement Disorders Clinical Practice. 2023. V. 10(5). P. 794—801. https://doi.org/10.1002/mdc3.13733
  • Eichers E. R., Paylor R., Lewis R. A., Bi W., Lin X., Meehan T. P., Stockton D. W., Justice M. J., Lupski J. R. Phenotypic characterization of Bbs4 null mice reveals age-dependent penetrance and variable expressivity. Human genetics. 2006. V. 120. P. 211—226. https://doi.org/10.1007/s00439—006—0197-y
  • Ellrichmann G., Blusch A., Fatoba O., Brunner J., Reick C., Hayardeny L., Hayden M., Sehr D., Winklhofer K. F., Saft C., Gold R. Laquinimod treatment in the R6/2 mouse model. Scientific reports. 2017. V. 7(1). P. 4947. https://doi.org/10.1038/s41598—017—04990—1
  • Falkowski B., Chudziński M., Jakubowska E., DudaSobczak A. Association of olfactory function with the intensity of self-reported physical activity in adults with type 1 diabetes. Pol Arch Intern Med. 2017. V. 127(7—8). P. 476—480. https://doi.org/10.20452/pamw.4073
  • Fan C., Wu Y., Rui X., Yang Y., Ling C., Liu S., Liu S., Wang Y. Animal models for COVID-19: advances, gaps and perspectives. Signal Transduction and Targeted Therapy. 2022. V. 7(1). P. 220. https://doi.org/10.1038/s41392—022—01087—8
  • Fiani B., Quadri S. A., Cathel A., Farooqui M., Ramachandran A., Siddiqi I., Ghanchi H., Zafar A., Berman B. W., Siddiqi J. Esthesioneuroblastoma: a comprehensive review of diagnosis, management, and current treatment options. World neurosurgery. 2019. V. 126. P. 194—211. https://doi.org/10.1016/j.wneu.2019.03.014
  • Flores-Cuadrado A., Saiz-Sanchez D., MohedanoMoriano A., Lamas-Cenjor E., Leon-Olmo V., Martinez-Marcos A., Ubeda-Bañon I. Astrogliosis and sexually dimorphic neurodegeneration and microgliosis in the olfactory bulb in Parkinson’s disease. NPJ Parkinson’s Disease. 2021. V. 7(1). P. 11. https://doi.org/10.1038/s41531—020—00154—7
  • Franks K. H., Chuah M. I. , King A. E., Vickers J. C. Connectivity of pathology: the olfactory system as a model for network-driven mechanisms of Alzheimer’s disease pathogenesis. Frontiers in aging neuroscience. 2015. V. 7. P. 234. https://doi.org/10.3389/fnagi.2015.00234
  • Fujita M., Ho G., Takamatsu Y., Wada R., Ikeda K., Hashimoto M. Possible Role of Amyloidogenic Evolvability in Dementia with Lewy Bodies: Insights from Transgenic Mice Expressing P123H b-Synuclein. International Journal of Molecular Sciences. 2020. V. 21(8). P. 2849. https://doi.org/10.3390/ijms21082849
  • Gawenis L. R., Hodges C. A., McHugh D.R., Valerio D. M., Miron A., Cotton C. U., Liu J., Walker N. M., Strubberg A. M., Gillen A. E., Mutolo M. J., Kotzamanis G., Bosch J., Harris A., Drumm M. L., Clarke L. L. A BAC transgene expressing human CFTR under control of its regulatory elements rescues CFTR knockout mice. Scientific Reports. 2019. V. 9(1). P. 11828. https://doi.org/10.1038/s41598—019—48105—4
  • Gascón C., Santaolalla F., Martínez A., Sánchez Del Rey A. Usefulness of the BAST-24 smell and taste test in the study of diabetic patients: a new approach to the determination of renal function. Acta oto-laryngologica. 2013. V. 133(4). P. 400—404. https://doi.org/10.3109/00016489.2012.746471
  • Gaudel F., Stephan D., Landel V., Sicard G., Féron F., Guiraudie-Capraz G. Expression of the Cerebral Olfactory Receptors Olfr110/111 and Olfr544 Is Altered During Aging and in Alzheimer’s DiseaseLike Mice. Mol Neurobiol. 2018. V. 56. P. 2057—2072. https://doi.org/10.1007/s12035—018—1196—4
  • Gheusi G. Behavioral Methods in Olfactory Research. Encyclopedia of Neuroscience. Berlin, Heidelberg. Springer, 2008. 4398 p. https://doi.org/10.1007/978—3—540—29678—2_590
  • Gouveri E., Katotomichelakis M., Gouveris H., Danielides V., Maltezos E., Papanas N. Olfactory dysfunction in type 2 diabetes mellitus: an additional manifestation of microvascular disease? Angiology. 2014. V. 65(10). P. 869—876. https://doi.org/10.1177/0003319714520956
  • Gruber A. D., Firsching T. C., Trimpert J., Dietert K. Hamster models of COVID-19 pneumonia reviewed: How human can they be? Veterinary Pathology. 2022. V. 59(4). P. 528—545. https://doi.org/10.1177/03009858211057197
  • Guilbault C., Saeed Z., Downey G. P., Radzioch D. Cystic fibrosis mouse models. American journal of respiratory cell and molecular biology. 2007. V. 36(1). P. 1—7. https://doi.org/10.1165/rcmb.2006—0184TR
  • Hardy J., Selkoe D. J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002. V. 297(5580). P. 353—356. https://doi.org/10.1126/science.1072994
  • Howe de la Torre S., Parlatini V., Cortese S. Longterm central nervous system (CNS) consequences of COVID-19 in children. Expert Review of Neurotherapeutics. 2023. V. 23(8). P. 703—720. https://doi.org/10.1080/14737175.2023.2239500
  • Hubbard P. S., Esiri M. M., Reading M., McShane R., Nagy Z. Alpha-synuclein pathology in the olfactory pathways of dementia patients. Journal of anatomy. 2007. V. 211(1). P. 117—124. https://doi.org/10.1111/j.1469—7580.2007.00748.x
  • Hudson M. L., Kinnunen T., Cinar H. N., Chisholm A. D. C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations. Developmental biology. 2006. V. 294(2). P. 352—365. https://doi.org/10.1016/j. ydbio.2006.02.036
  • Huisman E., Uylings H. B.M., Hoogland P. V. A 100% increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson’s disease. Movement disorders. 2004. V. 19(6). P. 687—692. https://doi.org/10.1002/mds.10713
  • Huisman E., Uylings H. B.M., Hoogland P. V. Genderrelated changes in increase of dopaminergic neurons in the olfactory bulb of Parkinson’s disease patients. Movement disorders: official journal of the Movement Disorder Society. 2008. V. 23(10). P. 1407—1413. https://doi.org/10.1002/mds.22009.
  • Hummel T., Liu D. T., Müller C. A., Stuck B. A., WelgeLüssen A., Hähner A. Olfactory Dysfunction: Etiology, Diagnosis, and Treatment. Deutsches Ärzteblatt International. 2023. V. 120(9). P. 146. https://doi.org/10.3238/arztebl.m2022.0411
  • Hüttenbrink K. B., Hummel T., Berg D., Gasser T., Hähner A. Olfactory dysfunction: common in later life and early warning of neurodegenerative disease. Deutsches Ärzteblatt International. 2013. V. 110(1—2). P. 1. https://doi.org/10.3238/arztebl.2013.0001
  • Ishimaru T., Miwa T., Nomura M., Iwato M., Furukawa M. Reversible hyposmia caused by intracranial tumour. The Journal of Laryngology & Otology. 1999. V. 113(8). P. 750—753. https://doi.org/10.1017/s0022215100145104
  • Jacobsen J. S., Wu C. C., Redwine J. M., Comery T. A., Arias R., Bowlby M., Martone R., Morrison J. H., Pangalos M. N., Reinhart P. H., Bloom F. E. Earlyonset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2006. V. 103(13). P. 5161—5166. https://doi.org/10.1073/pnas.0600948103.
  • Jing Y., Qi C. C., Yuan L., Liu X. W., Gao L. P., Yin J. Adult neural stem cell dysfunction in the subventricular zone of the lateral ventricle leads to diabetic olfactory defects. Neural Regeneration Research. 2017. V. 12(7). P. 1111—1118. https://doi.org/10.4103/1673—5374.211190
  • Jamain S., Radyushkin K., Hammerschmidt K., Granon S., Boretius S., Varoqueaux F., Ramanantsoa N., Gallego J., Ronnenberg A., Winter D., Frahm J., Fischer J., Bourgeron T., Ehrenreich H., Brose N. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proceedings of the National Academy of Sciences. 2008. V. 105(5). P. 1710—1715. https://doi.org/10.1073/pnas.0711555105
  • Jimenez, R.C., Casajuana-Martin, N., GarcíaRecio, A. Alcántara L., Pardo L., Campillo M., Gonzalez F. The mutational landscape of human olfactory G protein-coupled receptors. BMC Biol. 2021. V. 19. P. 21. https://doi.org/10.1186/s12915—021—00962—0
  • Jiménez A., Organista-Juárez D., Torres-Castro A., Guzmán-Ruíz M.A, Estudillo E., Guevara-Guzmán R. Olfactory dysfunction in diabetic rats is associated with miR-146a overexpression and inflammation. Neurochemical Research. 2020. V. 45(8). P. 1781—1790. https://doi.org/10.1007/s11064—020—03041-y
  • King A. J.F. The use of animal models in diabetes research. British journal of pharmacology. 2012. V. 166(3). P. 877—894. https://doi.org/10.1111/j.1476—5381.2012.01911.x
  • Kohn D. F., Clifford C. B. Biology and diseases of rats. Laboratory animal medicine. 2002. P. 121—165. https://doi.org/10.1016/B978—012263951—7/50007—7
  • Konnova E. A., Swanberg M. Animal models of Parkinson’s disease. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Brisbane. Exon Publications. 2018. P. 83—106. https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch5
  • Kosenko P. O., Smolikov A. B., Voynov V. B., Shaposhnikov P. D., Saevskiy A. I., Kiroy V. N. Effect of Xylazine-Tiletamine-Zolazepam on the Local Field Potential of the Rat Olfactory Bulb. Comp Med. 2020 V. 70(6). P. 492—498. https://doi.org/10.30802/AALAS-CM-20—990015.
  • Kretschmer V., Patnaik S. R., Kretschmer F., Chawda M. M., Hernandez-Hernandez V., MaySimera H. L. Progressive characterization of visual phenotype in Bardet–Biedl syndrome mutant mice. Investigative Ophthalmology & Visual Science. 2019. V. 60(4). P. 1132—1143. https://doi.org/10.1167/iovs.18—25210
  • Kulaga H. M., Patnaik S. R., Kretschmer F., Chawda M. M., Hernandez-Hernandez V., MaySimera H. L. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nature genetics. 2004. V. 36(9). P. 994—998. https://doi.org/10.1038/ng1418
  • Le Floch J. P., Le Lièvre G., Labroue M., Paul M., Peynegre R., Perlemuter L. et al. Smell dysfunction and related factors in diabetic patients. Diabetes care. 1993. V. 16(6). P. 934—937. https://doi.org/10.2337/diacare.16.6.934
  • Le Pichon C. E., Valley M.T, Polymenidou M., Chesler A. T., Sagdullaev B. T., Aguzzi A., Firestein S. Olfactory behavior and physiology are disrupted in prion protein knockout mice. Nature neuroscience. 2009. V. 12(1). P. 60—69. https://doi.org/10.1038/nn.2238
  • Lewis J., Dickson D. W., Lin W. L., Chisholm L., Corral A., Jones G., Yen S. H., Sahara N., Skipper L., Yager D., Eckman C., Hardy J., Hutton M., McGowan E. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001. V. 293(5534). P. 1487—1491. https://doi.org/10.1126/science.1058189
  • Li F., Ponissery-Saidu S., Yee K. K., Wang H., Chen M. L., Iguchi N., Zhang G., Jiang P., Reisert J., Huang L. Heterotrimeric G protein subunit Gγ13 is critical to olfaction. Journal of Neuroscience. 2013. V. 33(18). P. 7975—7984. https://doi.org/10.1523/JNEUROSCI.5563—12.2013
  • Li J., Gu C. Z., Su J. B., Zhu L. H., Zhou Y., Huang H. Y., Liu C. F. Changes in olfactory bulb volume in Parkinson’s disease: a systematic review and meta-analysis. PLoS One. 2016. V. 11(2). P. e0149286. https://doi.org/10.1371/journal.pone.0149286
  • Lietzau G., Davidsson W., Östenson C. G., Chiazza F., Nathanson D., Pintana H., Skogsberg J., Klein T., Nyström T., Darsalia V., Patrone C. Type 2 diabetes impairs odour detection, olfactory memory and olfactory neuroplasticity; effects partly reversed by the DPP-4 inhibitor Linagliptin. Acta neuropathologica communications. 2018. V. 6. P. 1—15. https://doi.org/10.1186/s40478—018—0517—1
  • Luo A. H., Cannon E. H., Wekesa K. S., Lyman R. F., Vandenbergh J. G., Anholt R. R. Impaired olfactory behavior in mice deficient in the a subunit of Go. Brain research. 2002. V. 941(1—2). P. 62—71.https://doi.org/10.1016/s0006—8993(02)02566—0
  • Machado C. F., Reis-Silva T.M., Lyra C. S., Felicio L. F., Malnic B. Buried food-seeking test for the assessment of olfactory detection in mice. Bio-protocol. 2018. V. 8(12). P. e2897–e2897. https://doi.org/10.21769/BioProtoc.2897
  • Macknin J. B., Higuchi M., Lee V. M., Trojanowski J. Q., Doty R. L. Olfactory dysfunction occurs in transgenic mice overexpressing human t protein. Brain research. 2004. V. 1000(1—2). P. 174—178. https://doi.org/10.1016/j.brainres.2004.01.047
  • Mai Y., Klockow M., Haehner A., Hummel T. Selfassessment of olfactory function using the “Sniffin’Sticks”. European Archives of Oto-RhinoLaryngology. 2023. V. 280(8). P. 1—13. https://doi.org/10.1007/s00405—023—07872—7
  • Manan H. A., Yahya N., Han P., Hummel T. A. A systematic review of olfactory-related brain structural changes in patients with congenital or acquired anosmia. Brain Structure and Function. 2022. V. 227(1). P. 1—26. https://doi.org/10.1007/s00429—021—02397—3
  • Mariman E. C., Vink R. G., Roumans N. J., Bouwman F. G., Stumpel C. T., Aller E. E., van Baak M. A., Wang P. The cilium: a cellular antenna with an influence on obesity risk. British Journal of Nutrition. 2016. V. 116(4). P. 576—592. https://doi.org/10.1017/S0007114516002282
  • Martin C., Gervais R., Hugues E., Messaoudi B., Ravel N. Learning Modulation of Odor-Induced Oscillatory Responses in the Rat Olfactory Bulb: A Correlate of Odor Recognition? J. Neurosci. 2004. V. 24. P. 389—397. https://doi.org/10.1523/JNEUROSCI.3433—03.2004
  • Masurkar A. V., Devanand D. P. Olfactory dysfunction in the elderly: basic circuitry and alterations with normal aging and Alzheimer’s disease. Current geriatrics reports. 2014. V. 3. P. 91—100. https://doi.org/10.1007/s13670—014—0080-y
  • Mathis S., Le Masson G., Soulages A., Duval F., Carla L., Vallat J. M., Solé G. Olfaction and anosmia: From ancient times to COVID-19. Journal of the Neurological Sciences. 2021. V. 425. P. 117433. https://doi.org/10.1016/j.jns.2021.117433
  • Mayer S. K., Thomas J., Helms M., Kothapalli A., Cherascu I., Salesevic A., Stalter E., Wang K., Datta P., Searby C., Seo S., Hsu Y., Bhattarai S., Sheffield V. C., Drack A. V. Progressive retinal degeneration of rods and cones in a Bardet-Biedl syndrome type 10 mouse model. Disease Models & Mechanisms. 2022. V. 15(9). P. dmm049473. https://doi.org/10.1242/dmm.049473
  • McCarron A., Parsons D., Donnelley M. Animal and cell culture models for cystic fibrosis: which model is right for your application? The American Journal of Pathology. 2021. V. 191(2). P. 228—242. https://doi.org/10.1016/j.ajpath.2020.10.017
  • McHugh D.R., Steele M. S., Valerio D. M., Miron A., Mann R. J., LePage D.F., Conlon R. A., Cotton C. U., Drumm M. L., Hodges C. A. A G542X cystic fibrosis mouse model for examining nonsense mutation directed therapies. PLoS One. 2018. V. 13(6). P. e0199573. https://doi.org/10.1371/journal.pone.0199573
  • McShane R.H., Nagy Z., Esiri M. M., King E., Joachim C., Sullivan N., Smith A. D. Anosmia in dementia is associated with Lewy bodies rather than Alzheimer’s pathology. Journal of Neurology, Neurosurgery & Psychiatry. 2001. V. 70(6). P. 739—743. https://doi.org/10.1136/jnnp.70.6.739
  • Melluso A., Secondulfo F., Capolongo G., Capasso G., Zacchia M. Bardet–Biedl Syndrome: Current Perspectives and Clinical Outlook. Therapeutics and Clinical Risk Management. 2023. V. 19. P. 115—132. https://doi.org/10.2147/TCRM.S338653.
  • Meredith T. L., Caprio J., Kajiura S. M. Sensitivity and specificity of the olfactory epithelia of two elasmobranch species to bile salts. J. Exp. Biol. 2012. V. 215. P. 2660—2667. https://doi.org/10.1242/jeb.066241
  • Mitrano D. A., Houle S. E., Pearce P., Quintanilla R. M., Lockhart B. K., Genovese B. C., Schendzielos R. A., Croushore E. E., Dymond E. M., Bogenpohl J. W., Grau H. J., Webb L. S. Olfactory dysfunction in the 3xTg-AD model of Alzheimer’s disease. IBRO Neuroscience Reports. 2021. V. 10. P. 51—61. https://doi.org/10.1016/j.ibneur.2020.12.004
  • Mundiñano I. C, Caballero M. C., Ordóñez C., Hernandez M., DiCaudo C., Marcilla I., Erro M. E., Tuñon M. T., Luquin M. R. Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta neuropathologica. 2011. V. 122. P. 61—74. https://doi.org/10.1007/s00401—011—0830—2
  • Murcia-Belmonte V., Tercero-Díaz M., BarrasaMartín D., López de la Vieja S., Muñoz-López M., Esteban P. F. Anosmin 1 N-terminal domains modulate prokineticin receptor 2 activation by prokineticin 2. Cellular Signalling. 2022. V. 98. P. 110417. https://doi.org/10.1016/j.cellsig.2022.110417
  • Murphy C. Olfactory and other sensory impairments in Alzheimer disease. Nature Reviews Neurology. 2019. V. 15(1). P. 11—24. https://doi.org/10.1038/s41582—018—0097—5
  • Nakazawa A., Nakazawa H., Kaji S., Ishii S. Oscillatory Electric Potential on the Olfactory Epithelium Observed during the Breeding Migration Period in the Japanese Toad, Bufo japonicus. Zoological Sciences. 2000. V. 17. P. 293—300 https://doi.org/10.2108/jsz.17.293
  • Neff E. P. A natural macaque model of Bardet-Biedl appears in Oregon. Lab Animal. 2020. V. 49(1). P. 17—17. https://doi.org/10.1038/s41684—019—0449—9
  • Neuner S. M., Heuer S. E., Huentelman M. J., O’Connell K.M.S., Kaczorowski C. C. Harnessing genetic complexity to enhance translatability of Alzheimer’s disease mouse models: a path toward precision medicine. Neuron. 2019. V. 101(3). P. 399—411. e5. https://doi.org/10.1016/j.neuron.2018.11.040
  • Nigro P., Chiappiniello A., Simoni S., Paolini Paoletti F., Cappelletti G., Chiarini P., Filidei M., Eusebi P., Guercini G., Santangelo V., Tarducci R., Calabresi P., Parnetti L., Tambasco N. Changes of olfactory tract in Parkinson’s disease: a DTI tractography study. Neuroradiology. 2021. V. 63. P. 235—242. https://doi.org/10.1007/s00234—020—02551—4
  • Nishimura D. Y., Fath M., Mullins R. F., Searby C., Andrews M., Davis R., Andorf J. L., Mykytyn K., Swiderski R. E., Yang B., Carmi R., Stone E. M., Sheffield V. C. Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proceedings of the National Academy of Sciences. 2004. V. 101(47). P. 16588—16593. https://doi.org/101(47)16588—16593
  • Oakley H., Cole S. L., Logan S., Maus E., Shao P., Craft J., Guillozet-Bongaarts A., Ohno M., Disterhoft J., Van Eldik L., Berry R., Vassar R. Intraneuronal b-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. Journal of Neuroscience. 2006. V. 26(40). P. 10129—10140. https://doi.org/10.1523/JNEUROSCI.1202—06.2006
  • Oddo S., Caccamo A., Shepherd J. D., Murphy M. P., Golde T. E., Kayed R., Metherate R., Mattson M. P., Akbari Y., LaFerla F. M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Ab and synaptic dysfunction. Neuron. 2003. V. 39(3). P. 409—421. https://doi.org/10.1016/s0896—6273(03)00434—3
  • Olichney J. M., Murphy C., Hofstetter C. R., Foster K., Hansen L. A., Thal L. J., Katzman R. Anosmia is very common in the Lewy body variant of Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry. 2005. V. 76(10). P. 1342—1347. https://doi.org/10.1136/jnnp.2003.032003
  • Pak T. K., Carter C. S., Zhang Q., Huang S. C., Searby C., Hsu Y., Taugher R. J., Vogel T., Cychosz C. C., Genova R., Moreira N. N., Stevens H., Wemmie J. A., Pieper A. A., Wang K., Sheffield V. C. A mouse model of Bardet-Biedl Syndrome has impaired fear memory, which is rescued by lithium treatment. PLoS genetics. 2021. V. 17(4). P. e1009484. https://doi.org/10.1371/journal.pgen.1009484
  • Patino J., Karagas N. E., Chandra S., Thakur N., Stimming E. F. Olfactory dysfunction in Huntington’s disease. Journal of Huntington’s disease. 2021. V. 10(4). P. 413—422. https://doi.org/10.3233/JHD-210497
  • Patt Y. S., Fisher L., David P., Bergwerk M., Shoenfeld Y. Autoimmunity, COVID-19 Omicron Variant, and Olfactory Dysfunction: A Literature Review. Diagnostics. 2023. V. 13(4). P. 641. https://doi.org/10.3390/diagnostics13040641
  • Pearce R. K.B., Hawkes C. H., Daniel S. E. The anterior olfactory nucleus in Parkinson’s disease. Movement disorders: official journal of the Movement Disorder Society. 1995. V. 10(3). P. 283—287. https://doi.org/10.1002/mds.870100309
  • Peterson S. M., McGill T.J., Puthussery T., Stoddard J., Renner L., Lewis A. D., Colgin L. M.A., Gayet J., Wang X., Prongay K., Cullin C., Dozier B. L., Ferguson B., Neuringer M. Bardet-Biedl Syndrome in rhesus macaques: A nonhuman primate model of retinitis pigmentosa. Experimental eye research. 2019. V. 189. P. 107825. https://doi.org/10.1016/j.exer.2019.107825
  • Piiponniemi T. O., Parkkari T., Heikkinen T., Puoliväli J., Park L. C., Cachope R., Kopanitsa M. V. Impaired performance of the Q175 mouse model of Huntington’s disease in the touch screen paired associates learning task. Frontiers in Behavioral Neuroscience. 2018. V. 12. P. 226. https://doi.org/10.3389/fnbeh.2018.00226
  • Pouladi M. A., Morton A. J., Hayden M. R. Choosing an animal model for the study of Huntington’s disease. Nature Reviews Neuroscience. 2013. V. 14(10). P. 708—721. https://doi.org/10.1038/nrn3570
  • Prediger R. D., Aguiar A. S. Jr, Rojas-Mayorquin A.E., Figueiredo C. P., Matheus F. C., Ginestet L., Chevarin C., Bel E. D., Mongeau R., Hamon M., Lanfumey L., Raisman-Vozari R. Single intranasal administration of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in C57BL/6 mice models early preclinical phase of Parkinson’s disease. Neurotoxicity research. 2010. V. 17. P. 114—129. https://doi.org/10.1007/s12640—009—9087—0
  • Rasmussen V. F., Rasmussen D., Thrysøe M., Karlsson P., Madsen M., Kristensen K., Nyengaard J. R., Terkelsen A. J., Vestergaard E. T., Ovesen T. Cranial Nerve Affection in Adolescents with Type 1 Diabetes Assessed by Corneal Confocal Microscopy, Smell and Taste Tests. Pediatric Diabetes. 2023. V. 2023. P. 2709361. https://doi.org/10.1155/2023/2709361
  • Rödig N., Sellmann K., Dos Santos Guilherme M., Nguyen V. T.T., Cleppien D., Stroh A., May-Simera H.L., Endres K. Behavioral Phenotyping of Bbs6 and Bbs8 Knockout Mice Reveals Major Alterations in Communication and Anxiety. International Journal of Molecular Sciences. 2022. V. 23(23). P. 14506. https://doi.org/10.3390/ij ms232314506
  • Rodríguez-Jiménez J.C., Moreno-Paz F.J., Terán L. M., Guaní-Guerra E. Aspirin exacerbated respiratory disease: current topics and trends. Respiratory medicine. 2018. V. 135. P. 62—75. https://doi.org/10.1016/j.rmed.2018.01.002
  • Rolen S. H., Caprio J. Bile salts are effective taste stimuli in channel catfish. J. Exp. Biol. 2008.V. 211. P. 2786—2791. https://doi.org/10.1242/jeb.018648
  • Rosen B. H., Chanson M., Gawenis L. R., Liu J., Sofoluwe A., Zoso A., Engelhardt J. F. Animal and model systems for studying cystic fibrosis. Journal of Cystic Fibrosis. 2018. Т. 17(2). P. S28–S34. https://doi.org/10.1016/j.jcf.2017.09.001
  • Rugarli E. I., Di Schiavi E., Hilliard M. A., Arbucci S., Ghezzi C., Facciolli A., Coppola G., Ballabio A., Bazzicalupo P. The Kallmann syndrome gene homolog in C. elegans is involved in epidermal morphogenesis and neurite branching. Development and Deseases. 2002. V.129(5). P. 1283—1294. https://doi.org/10.1242/dev.129.5.1283
  • Schmachtenberg O. Histological and electrophysiological properties of crypt cells from the olfactory epithelium of the marine teleost Trachurus symmetricus. J Comp Neurol 2006. V. 495(1). P. 113—121. https://doi.org/10.1002/cne.20847
  • Shu M., Wu H., Wei S., Shi Y., Li Z., Cheng Y., Fang L., Xu C. Identification and Functional Characterization of a Novel Variant in the SEMA3A Gene in a Chinese Family with Kallmann Syndrome. International Journal of Endocrinology. 2022. V. 2022. P. 2504660. https://doi.org/10.1155/2022/2504660
  • Slotnick B., Coppola D. M. Odor-cued taste avoidance: a simple and robust test of mouse olfaction. Chemical Senses. 2015. V. 40(4). P. 269—278. https://doi.org/10.1093/chemse/bjv005
  • Spielman D. B., Overdevest J., Gudis D. A. Olfactory outcomes in the management of aspirin exacerbated respiratory disease related chronic rhinosinusitis. World Journal of Otorhinolaryngology-Head and Neck Surgery. 2020. V. 6(4). P. 207—213. https://doi.org/10.1016/j.wjorl.2020.07.001
  • Su C. Y., Menuz K., Carlson J. R. Olfactory perception: receptors, cells, and circuits. Cell. 2009. V. 139(1). P. 45—59. https://doi.org/10.1016/j.cell.2009.09.015
  • Taguchi T., Ikuno M., Hondo M., Parajuli L. K., Taguchi K., Ueda J., Sawamura M., Okuda S., Nakanishi E., Hara J., Uemura N., Hatanaka Y., Ayaki T., Matsuzawa S., Tanaka M., El-Agnaf O.M.A., Koike M., Yanagisawa M., Uemura M. T., Yamakado H., Takahashi R. b-Synuclein BAC transgenic mice exhibit RBD-like behaviour and hyposmia: a prodromal Parkinson’s disease model. Brain. 2020. V. 143(1). P. 249—265. https://doi.org/10.1093/brain/awz380
  • Taniguchi M., Mitsui C., Hayashi H., Ono E., Kajiwara K., Mita H., Watai K., Kamide Y., Fukutomi Y., Sekiya K., Higashi N. Aspirin-exacerbated respiratory disease (AERD): Current understanding of AERD. Allergology International. 2019. V. 68(3). P. 289—295. https://doi.org/10.1016/j.alit.2019.05.001
  • Tarakad A., Jankovic J. Anosmia and ageusia in Parkinson’s disease. International review of neurobiology. 2017. V. 133. P. 541—556. https://doi.org/10.1016/bs.irn.2017.05.028
  • Tchekmedyian R., Lundberg M., Buchheit K. M., Maurer R., Gakpo D., Mullur J., Bensko J. C., Laidlaw T. M. Loss of smell in patients with aspirinexacerbated respiratory disease impacts mental health and quality of life. Clinical & Experimental Allergy. 2022. V. 52(12). P. 1414—1421. https://doi.org/10.1111/cea.14157
  • Torres-Pasillas G., Chi-Castañeda D., Carrillo-Castilla P., Marín G., Hernández-Aguilar M.E., ArandaAbreu G.E., Manzo J., García L. I. Olfactory Dysfunction in Parkinson’s Disease, Its Functional and Neuroanatomical Correlates. NeuroSci. 2023. V. 4(2). P. 134—151. https://doi.org/10.3390/neurosci4020013
  • Tricas T. C., Kajiura S. M., Summers A. P. Response of the hammerhead shark olfactory epithelium to amino acid stimuli. J. Comp. Physiol. 2009. V 195. P. 947—954. https://doi.org/10.1007/s00359—009—0470—3
  • Van Raamsdonk J. M., Warby S. C., Hayden M. R. Selective degeneration in YAC mouse models of Huntington disease. Brain research bulletin. 2007. V. 72(2—3). P. 124—131. https://doi.org/10.1016/j.brainresbull.2006.10.018.
  • Várkonyi T., Körei A., Putz Z., Kempler P. Olfactory dysfunction in diabetes: a further step in exploring central manifestations of neuropathy? Angiology. 2014. V. 65(10). P. 857—860. https://doi.org/10.1177/0003319714526971
  • Waguespack R. W. Congenital Anosmia. Archives of Otolaryngology–Head & Neck Surgery. 1992. V. 118(1). P. 10. https://doi.org/10.1001/archotol.1992.01880010012002
  • Wakabayashi T., Hidaka R., Fujimaki S., Asashima M., Kuwabara T. Diabetes impairs Wnt3 proteininduced neurogenesis in olfactory bulbs via glutamate transporter 1 inhibition. Journal of Biological Chemistry. 2016. V. 291(29). P. 15196—15211. https://doi.org/10.1074/jbc.M115.672857
  • Wangberg H., White A. A. Aspirin-exacerbated respiratory disease. Current opinion in immunology. 2020. V. 66. P. 9—13. https://doi.org/10.1016/j.coi.2020.02.006
  • Weber E. M., Olsson I. A.S. Maternal behavior in Mus musculus sp.: an ethological review. Applied Animal Behavior Science. 2008. V. 114(1—2). P. 1—22. https://doi.org/10.1016/j.applanim.2008.06.006
  • Weinstock R. S., Wright H. N., Smith D. U. Olfactory dysfunction in diabetes mellitus. Physiology & behavior. 1993. V. 53(1). P. 17—21. https://doi.org/10.1016/0031—9384(93)90005-z
  • Wilson R. S., Arnold S. E., Schneider J. A., Tang Y., Bennett D. A. The relationship between cerebral Alzheimer’s disease pathology and odour identification in old age. Journal of Neurology, Neurosurgery & Psychiatry. 2007. V. 78(1). P. 30—35. https://doi.org/10.1136/jnnp.2006.099721
  • Witt R. M., Galligan M. M., Despinoy J. R., Segal R. Olfactory behavioral testing in the adult mouse. Journal of Visualized Experiments. 2009. V. 23. P. e949. https://doi.org/10.3791/949.
  • Yahyaeipour H., Ganji F., Sepehri H., Nazari Z. The effect of type 2 diabetes on the olfactory bulb structure of Wistar rats. Nova Biologica Reperta. 2023. V. 10(1). P. 11—16.
  • Yang J., Pinto J. M. The epidemiology of olfactory disorders. Current otorhinolaryngology reports. 2016. V. 4(2). P. 130—141. https://doi.org/10.1007/s40136—016—0120—6
  • Yang M., Crawley J. N. Simple behavioral assessment of mouse olfaction. Current protocols in neuroscience. 2009. V. 48(1). P. 8.24.1—8.24.12. https://doi.org/10.1002/0471142301.ns0824s48.
  • Yu Q., Cai Z., Li C., Xiong Y., Yang Y., He S., Tang H., Zhang B., Du S., Yan H., Chang C., Wang N. A novel Spectrum contrast mapping method for functional magnetic resonance imaging data analysis. Frontiers in Human Neuroscience. 2021. V. 15. P. 739668. https://doi.org/10.3389/fnhum.2021.739668
  • Zaghloul H., Pallayova M., Al-Nuaimi O., Hovis K. R., Taheri S. Association between diabetes mellitus and olfactory dysfunction: current perspectives and future directions. Diabetic Medicine. 2018. V. 35(1). P. 41—52. https://doi.org/10.1111/dme.13542
  • Zapiec B., Dieriks B. V., Tan S., Faull R. L. M., Mombaerts P., Curtis M. A. A ventral glomerular deficit in Parkinson’s disease revealed by whole olfactory bulb reconstruction. Brain. 2017. V. 140(10). P. 2722—2736. https://doi.org/10.1093/brain/awx208
  • Zhang C., Hara T. J. Lake char (Salvelinus namaycush) olfactory neurons are highly sensitive and specific to bile acids. J. Comp. Physiol. 2009. A 195. Р. 203—215. https://doi.org/10.1007/s00359—008—0399-y
  • Zhao Y., He Y., He R., Zhou Y., Pan H., Zhou X., Zhu L., Zhou X., Liu Z., Xu Q., Sun Q., Tan J., Yan X., Tang B., Guo J. The discriminative power of different olfactory domains in Parkinson’s disease. Frontiers in neurology. 2020. V. 11. P. 420. https://doi.org/10.3389/fneur.2020.00420
  • Zheng J., Wong L. R., Li K., Verma A. K., Ortiz M. E., Wohlford-Lenane C., Leidinger M. R., Knudson C. M., Meyerholz D. K., McCray P. B. Jr, Perlman S. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature. 2021. V. 589(7843). P. 603—607. https://doi.org/10.1038/s41586—020—2943-z
  • Ziuzia-Januszewska L., Januszewski M. Pathogenesis of olfactory disorders in COVID-19. Brain Sciences. 2022. V. 12(4). P. 449. https://doi.org/10.3390/brainsci12040449.
  • Zou J., Wang W., Pan Y. W., Lu S., Xia Z. Methods to measure olfactory behavior in mice. Current protocols in toxicology. 2015. V. 63(1). P. 11.18. 1—11.18.21. https://doi.org/10.1002/0471140856.tx1118s63
  • Zou J., Wang W., Pan Y. W., Lu S., Xia Z. Methods to measure olfactory behavior in mice. Current protocols in toxicology. 2015. V. 63(1). P. 11.18. 1—11.18.21. https://doi.org/10.1002/0471140856.tx1118s63