• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

In search of the molecular mechanisms of adaptation memory in rods: basic activity of phosphodiesterase

© 2024 D. A. Nikolaeva, M. L. Firsov, L. A. Astakhovaa

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences 194223, Saint-Petersburg, Thorez, 44, Russia

Received 29 Nov 2023

Retinal rods, the photoreceptors responsible for twilight vision, are capable of adapting to a wide range of light levels. The molecular mechanisms of light adaptation have been well studied, but an interesting question is what changes occur in the phototransduction cascade after the adaptive light stimuli are eliminated. Previously, we showed the phenomenon of adaptation memory in amphibian rods: after background illumination photoreceptor sensitivity to light remained reduced for several minutes, while the dark current recovered within 20—30 s. This suggests the existence of additional, as yet unknown, regulatory mechanisms of the phototransduction cascade that act after the adaptive effect of light. In search of specific mechanisms that could explain the effect of adaptation memory, we performed electrophysiological experiments on isolated frog rods to evaluate the basal activity of the effector enzyme of the phototransduction cascade, the phosphodiesterase type 6, in the dark and after saturating background illumination. It was found that the post-adaptation state of rods was characterized by increased basal phosphodiesterase activity, which gradually decreased to the dark level within tens of seconds after turning off the adaptive illumination. These results also suggest that the components of the phototransduction cascade may undergo some unstudied changes after light adaptation.

Key words: phototransduction cascade, rods, adaptation memory, phosphodiesterase

DOI: 10.31857/S0235009224010032

Cite: Nikolaeva D. A., Firsov M. L., Astakhovaa L. A. V poiskakh molekulyarnykh mekhanizmov adaptatsionnoi pamyati palochek: bazovaya aktivnost fosfodiesterazy [In search of the molecular mechanisms of adaptation memory in rods: basic activity of phosphodiesterase]. Sensornye sistemy [Sensory systems]. 2024. V. 38(1). P. 45–51 (in Russian). doi: 10.31857/S0235009224010032

References:

  • Astakhova L. A., Firsov M. L., Govardovskii V. I. Kinetics of turn-offs of frog rod phototransduction cascade. J. Gen. Physiol. 2008. V. 132(5). P. 587—604. https://doi.org/10.1085/jgp.200810034
  • Astakhova L. A., Samoiliuk E. V., Govardovskii V. I., Firsov M. L. cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade. J. Gen. Physiol. 2012. V. 140(4). P. 421—433. https://doi.org/10.1085/jgp.201210811
  • Baylor D. A., Lamb T. D., Yau K. W. Responses of retinal rods to single photons. J. Physiol. 1979. V. 288. P. 613—634. https://doi.org/10.1113/jphysiol.1979. sp012716
  • Calvert P. D., Govardovskii V. I., Arshavsky V. Y., Makino C. L. Two temporal phases of light adaptation in retinal rods. J. Gen. Physiol. 2002. V. 119(2). P. 129—146. https://doi.org/10.1085/jgp.119.2.129
  • Cornwall M. C., Fain G. L. Bleached pigment activates transduction in isolated rods of the salamander retina. J. Physiol. 1994. V. 480(2). P. 261—279. https://doi.org/10.1113/jphysiol.1994.sp020358
  • Cornwall M. C., Matthews H. R., Crouch R. K., Fain G. L. Bleached pigment activates transduction in salamander cones. J. Gen. Physiol. 1995. V. 106(3). P. 543—557. https://doi.org/10.1085/jgp.106.3.543
  • Govardovskii V. I. Firsov M. L. Unknown mechanisms regulating the GPCR signal cascade in vertebrate photoreceptors. Neurosci. Behav. Physiol. 2012. V. 42. P. 180—192. https://doi.org/10.1007/s11055-011-9551-1
  • Hodgkin A. L., Nunn B. J. Control of light-sensitive current in salamander rods. J. Physiol. 1988. V. 403. P. 439—471. https://doi.org/10.1113/jphysiol.1988.sp017258
  • Hodgkin A. L., McNaughton P.A., Nunn B. J. The ionic selectivity and calcium dependence of the lightsensitive pathway in toad rods. J. Physiol. 1985. V. 358. P. 447—468. https://doi.org/10.1113/jphysiol.1985. sp015561
  • Lamb T. D. Photoreceptor physiology and evolution: cellular and molecular basis of rod and cone phototransduction. J. Physiol. 2022. V. 600(21). P. 4585—4601. https://doi.org/10.1113/JP282058
  • Nikolaeva D. A., Nekrasova M. A., Rotov A. Y., Astakhova L. A. Adaptation memory in photoreceptors: different mechanisms in rods and cones. Front. Mol. Neurosci. 2023. V. 16. P. 1135088. https://doi.org/10.3389/fnmol.2023.1135088
  • Paglia M. J., Mou H., Cote R. H. Regulation of photoreceptor phosphodiesterase (PDE6) by phosphorylation of its inhibitory gamma subunit reevaluated. J. Biol. Chem. 2002. V. 277. P. 5017—5023. http://dx.doi.org/10.1074/jbc.M106328200
  • Pugh Jr., Edward N., Lamb T. D. Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. In: Handbook of biological physics. 2000. V. 3. 183—255. https://doi.org/10.1016/S1383—8121(00)80008—1
  • Rotov A. Y., Astakhova L. A., Firsov M. L., Govardovskii V. I. Light adaptation of retinal rods, adaptation memory, and afterimages. Neurosci. Behav. Physiol. 2021. V. 51. P. 116—122. https://doi. org/10.1007/s11055-020-01046-2
  • Vinberg F., Chen J., Kefalov V. J. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Prog. Retin. Eye Res. 2018.V. 67. P. 87—101. https://doi.org/10.1016/j. preteyeres.2018.06.001