• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Providing Reproducibility and objective control in computer measurement of fusion reserves

© 2023 A. S. Bolshakov, N. N. Vasilyeva, G. I. Rozhkova

Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences 127051 Moscow, B. Karetny per. 19, Build. 1, Russia

Received 18 Apr 2023

As is known, the main indicators of the stable functioning of fusion mechanisms – the physiological basis of binocular perception – are the fusion reserves (FR), an accurate assessment of which is still problematic. To measure the FR, a small mismatch between the accommodation and vergence systems is introduced and gradually increasing to reach certain critical angles at which the fusion mechanisms cease to function, as judged by the subjective sensations of the subjects reporting the break of the binocular image into two monocular ones. The subjectivity of such assessments of FR, as well as poorly studied dependence of FR on the parameters of test objects and measurement procedures, make it difficult to determine standard values and to create databases on RF. To overcome these shortcomings inherent in traditional methods of measuring RF, at the end of the last century, attempts were made to use computer methods (Rozhkova et al., 1996 ab, 1998). This article presents the results of a critical evaluation of the computer method for measuring FR using the author’s interactive computer program FUZIYA (Bolshakov, Rozhkova, 2013), which provides for the generation of variable test images on a special display designed for the polarization method of separating the left and right channels of test object presentation. The purpose of this study was to evaluate the accuracy and reproducibility of the measurement results, as well as to test the effectiveness of the previously proposed method to programmatically provide objective control of the binocular image break. The data obtained confirm the prospects of the approach used and make it possible to clarify the specific forms of its rational application.

Key words: binocular vision, fusion reserves, computer methods of measurement, objective control of fusion, standardization of measurements

DOI: 10.31857/S0235009223030034  EDN: WQLBYL

Cite: Bolshakov A. S., Vasilyeva N. N., Rozhkova G. I. Obespechenie vosproizvodimosti i obektivnogo kontrolya pri kompyuternom izmerenii fuzionnykh rezervov [Providing reproducibility and objective control in computer measurement of fusion reserves]. Sensornye sistemy [Sensory systems]. 2023. V. 37(3). P. 218–234 (in Russian). doi: 10.31857/S0235009223030034

References:

  • Bolshakov A.S., Rozhkova G.I. Interaktivnaya testovaya programma dlya otsenki sostoyaniya i trenirovki fuzionnykh mekhanizmov binokulyarnogo zreniya FUZIYA [Interanctive computer program “FUZIYA” for assessment and training of binocular vision fusional reserves]. State registration certificate № 2013610975, 09.01.2013.
  • Vasilyeva N.N. Ocenka binokulyarnyh zritel’nyh funkcij u mladshih shkol’nikov s trudnostyami obucheniya chteniyu [Evaluation of binocular visual functions in junior schoolchildren with difficulties in learning reading]. Novye issledovaniya [New Research]. 2011. V. 2 (27). P. 5–15. (in Russian).
  • Vasilyeva N.N. Fuzionnye rezervy u detej 5-7 let s razlichnym biologicheskim vozrastom [Fusion reserves in 57 year old children of different biological age]. Novye issledovaniya [New Research]. 2010. V. 2 (23). P. 24–30. (in Russian).
  • Vasilyeva N.N., Rozhkova G.I. Vozrastnaya dinamika fuzionnykh rezervov, izmerennykh pri pomoshchi tsiklopicheskikh test-ob"ektov s markerami [Age dynamics of fusional reserves assessed by means of cyclopean stimuli with markers]. Sensornye sistemy [Sensory systems]. 2009. V. 23 (1). P. 40–50. (in Russian).
  • Vasilyeva N.N., Rozhkova G.I. Sravnenie rezul’tatov ocenki fuzionnyh rezervov razlichnymi metodami [Comparison of the results of fusion reserves assessment by different methods]. Conference proceedings “Nevskie gorizonty–2020”. Saint-Petersburg. 2020. P. 92–93. (in Russian).
  • Vasilyeva N.N., Rozhkova G.I. Trenirovka binokulyarnyh zritel’nyh funkcij u mladshih shkol’nikov s trudnostya mi v chtenii kak faktor korrekcionnoj raboty [Binocular vision training as a correction technique for reading difficulties in early school children]. Novye issledovaniya [New Research]. 2011. V. 3 (28). P. 5–16. (in Russian).
  • Vasilyeva N.N., Rozhkova G.I. Gracheva M.A., Bolshakov A.S. Zavisimost’ rezul’tatov ocenki fuzionnyh rezervov ot metoda izmereniya, instrumentariya i parametrov testovyh stimulov [Dependence of the results of the assessment of fusion reserves on the measurement method, tools and parameters of test stimuli]. Sensornye sistemy [Sensory systems]. 2022. V. 36 (3). P. 199–217. (in Russian). https://doi.org/10.31857/S023500922203009X
  • Dmitriyeva S.V., Gracheva M.A., Vasilyeva N.N., Smoleevskiy A.E., Man’ko O.M. Ocenka vliyaniya uslovij imitacii nevesomosti na zritel’nuyu rabotosposobnost' [Simulation of weightlessness and assessment of its influence on visual performance]. Izvestiya Rossijskoj Voenno-Medicinskoj Akademii [Izvestia of the russian military medical academy]. 2018. V. 37 (2). P. 97–101. (in Russian).
  • Efimova E.L. Komp’yuternye pleopto-ortopticheskie metody lecheniya vtorichnoj ambliopii u detej [Computer pleopto-orthoptic methods of treatment of secondary amblyopia in children]. Abstract of the PhD thesis. Saint-Petersburg. 2011. 20 p. (in Russian).
  • Efimova E.L., Somov E.E. Sovremennyi sposob lecheniya ambliopii vtorichnogo geneza i ego ehffektivnost’ [A modern method for secondary amblyopia treatment, and its efficacy]. Oftal’mologicheskie vedomosti [Ophthalmology Reports]. 2010. V. 3 (3). P. 10–13. (in Russian).
  • Kashura O.I., Egorov V.V., Smolyakova G.P. Ehffektivnost’ funktsional’noi reabilitatsii zritel’nykh rasstroistv u shkol’nikov mladshikh klassov [The efficacy of functional rehabilitation of visual disturbances in junior schoolchildren]. Rossiiskaya Pediatricheskaya Oftal’mologiya [Russian Pediatric Ophthalmology]. 2012. (1). P. 22–25. (in Russian).
  • Kononova N.E. Sensorno-motornye narusheniya v zritel’noj sfere detej doshkol’nogo vozrasta pri sodruzhestvennom kosoglazii [Sensory-motor disorders in the visual sphere of preschool children with concomitant strabismus]. Abstract of the PhD thesis. Saint-Petersburg. 2022. 25 p. (in Russian).
  • Kononova N.E., Somov E.E. Klinika i lechenie detej doshkol’nogo vozrasta s monolateral’nym i al’terniruyushchim sodruzhestvennym kosoglaziem [Clinic and Treatment of Preschool Children with Monolateral and Alternating Concomitant Strabismus]. Rossijskaya detskaya oftal’mologiya [Russian Ophthalmology of Children]. 2020. (2). З. 7–11. (in Russian). https://doi.org/10.25276/2307-6658-2020-2-7-11
  • Kononova N.E., Somov E.E. Fuzionnye vozmozhnosti zdorovykh detei razlichnogo vozrasta i stradayushchikh sodruzhestvennym kosoglaziem [Fusion capabilities of healthy children of different ages and those suffering from concomitant strabismus]. Conference proceedings “Nevskie gorizonty–2018”. Saint-Petersburg. 2018. P. 152–152. (in Russian).
  • Koskin S.A., Boiko E.V., Shelepin YU.E. Sistema opredeleniya ostroty zreniya v tselyakh vrachebnoi ehkspertizy [System for determining visual acuity for the purpose of medical expertise]. Vestnik Rossiiskoi voenno-meditsinskoi akademii. 2007. №. 3. P. 81–86.
  • Koskin S.A. Sistema opredeleniya ostroty zreniya v tselyakh vrachebnoi ehkspertizy [System for determining visual acuity for the purpose of medical expertise]. Dokt.med.sci.diss. Saint Petersburg. 2009. 178 p.
  • Krasnoperova N.A. Zritel’naya rabotosposobnost' u detej s narusheniyami sluha [Visual performance in children with hearing impairments]. Defektologiya [Defectology]. 2001. (1). P. 11–17. (in Russian).
  • Kuznetsov Y.V. Naznachenie rasstoyaniya mezhdu opticheskimi tsentrami linz v ochkakh [Assigning the distance between the optical centers of the lenses in glasses]. SPb: “OOO RA “Veko””, 2009. 104 p. (in Russian).
  • Morozova T.A., Terentjeva A.E., Pozdeeva N.A. 3D-tekhnologii v oftal’mologii: pervyj opyt [3D Technologies for ophthalmosurgery: early experiece]. Prakticheskaya medicina [Practical Medicine]. 2018. V. 16 (5). P. 144–150. (in Russian).
  • Rozhkov S.N., Ovsyannikova N.A. Stereoskopiya v kino-, foto-, videotekhnike. Terminologicheskii slovar' [Stereoscopy in film, photo, video equipment. Terminological dictionary]. Moscow. Paradiz. 2003. 136 p. (in Russian).
  • Rozhkova G.I., Vasilyeva N.N., Rozhkov S.N. Fuzionnye sposobnosti cheloveka i vozmozhnosti rasshireniya diapazona parallaksov v stereofil’mah bez nagruzki na zritel’nuyu sistemu [Human fusion abilities and the possibility of expanding the range of parallaxes in stereo films without burdening the visual system]. Mir tekhniki kino [World of Technique of Cinema]. 2009. (12). P. 11–15. (in Russian).
  • Rozhkova G.I., Podugol’nikova T.A., Leshkevich I.A., Kornyushin M.A., Nosov V.N., Matveev S.G. Komp’yuternoe lechenie kosoglaziya i ambliopii s primeneniem sluchajno-tochechnyh stereogram [Computer treatment of strabismus and amblyopia using random dot stereograms]. Vestnik oftal’mologii [The Russian Annals of Ophthalmology]. 1998. (4). P. 28–32. (in Russian).
  • Rozhkova G.I., Podugol’nikova T.A., Sisengalieva G.Z. Komp’yuternoe testirovanie binokulyarnoi zritel’noi sistemy cheloveka. II. Pryamaya otsenka osnovnykh klinicheskikh pokazatelei [Computer-based testing of human binocular vision system. II. Direct assessment of the main clinical indicators]. Sensornye sistemy [Sensory systems]. 1996а. V. 10 (1). P. 59–68. (in Russian).
  • Rozhkova G.I., Podugol’nikova T.A., Tokareva V.S., Vorontsov D.D., Golubkov M.G., Drygin S.V. Integrirovannyi lechebno-diagnosticheskii kompleks programm “AKADEMIK” [Integrated programs for diagnostics and treatment “AKADEMIK”]. 1996. State certificate “РОСС RU. СП07.Н00035”.
  • Rozenblyum Yu.Z. Optometriya [Optometry]. Saint-Petersburg. 1996. 320 p. (in Russian).
  • Sergienko N.M. Oftal’mologicheskaya optika [Ophthalmological optics]. Moscow. Meditsina, 1991. 144 p. (in Russian).
  • Timoshenko T.A., Shtilerman A.L. Sovremennye metody lecheniya ambliopii u detej [Advanced methods of amblyopia treatment in children]. Tihookeanskij medicinskij zhurnal [Pacific medical journal]. 2013. (4). Р. 59–62. (in Russian).
  • State clinical recommendations. Diagnostika i lechenie sodruzhestvennogo kosoglaziya [Diagnosis and treatment of concomitant strabismus]. Rossiiskaya Pediatricheskaya Oftal’mologiya [Russian Pediatric Ophthalmology]. 2015. (2). P. 56–63. (in Russian).
  • Adoh T.O., Woodhouse J.M., Oduwaiye K.A. The Cardiff Test: a new visual acuity test for toddlers and children with intellectual impairment. A preliminary report. Optometry and vision science: official publication of the American Academy of Optometry. 1992. V. 69 (6). P. 427–432.
  • Adoh T.O., Woodhouse J.M. The Cardiff acuity test used for measuring visual acuity development in toddlers. Vision Research. 2003. V. 34 (4). P. 555–560. https://doi.org/10.1016/0042-6989(94)90168-6
  • Alrasheed S.H., Aldakhil S. Comparison of measured fusional vergence amplitudes using prism bar and synoptophore in Sudanese patients with near exophoria. The Open Ophthalmology Journal. 2022. V. 16. P. 1–7. https://doi.org/10.2174/18743641-v16-e2209301
  • American Optometric Association. Evidence-based clinical practice guideline: comprehensive pediatric eye and vision examination. Optometric clinical practice. 2020. V. 2 (2). https://doi.org/10.37685/uiwlibraries.2575-7717.2.2.1007
  • Bland J.M., Altman D.G. Measuring agreement in method comparison studies. Statistical methods in medical research. 1999. V. 8 (2). P. 135–160.
  • Bland J.M., Altman D.G. Agreement between methods of measurement with multiple observations per individual. Journal of biopharmaceutical statistics. 2007. V. 17 (4). P. 571–582. https://doi.org/10.1080/10543400701329422
  • Bolshakov A.S., Vasilyeva N.N., Gracheva M.A., Rozhkova G.I. Assessment of fusional reserves with interactive software: Dependence of results on left-right image separation method. Perception. 2013. V. 42 (Supplementary). P. 224.
  • Cooper J.S., Burns C.R., Cotter S.A., Daum K.M., Griffin J.R., Scheiman M.M. Care for the patient with accommodative and vergence dysfunction. Optometric clinical practice guideline. U.S.A. Healthy Vision, 2000. 83 p.
  • Elliott D.B. Clinical procedures in primary eye care E-Book. Elsevier Health Sciences. 2020.
  • Fray K.J. Fusional amplitudes: exploring where fusion falters. Am Orthopt J. 2013. V. 63. P. 41–54. https://doi.org/10.3368/aoj.63.1.41
  • Frisén L. Vanishing optotypes. New type of acuity test letters. Arch Ophthalmol. 1986. V. 104 (8). P. 1194–1198. https://doi.org/10.1001/archopht.1986.01050200100060
  • Hamm L.M., Yeoman J.P., Anstice N.S., Dakin S.C. The Auckland optotypes: an open-access pictogram set for measuring recognition acuity. J Vis. 2018a. V. 18 (3). Article 13. https://doi.org/10.1167/18.3.13
  • Hamm L.M., Anstice N.S., Black J.M., Dakin S.C. Recognition acuity in children measured using the Auckland optotypes. Ophthalmic Physiol Opt. 2018b. V. 38 (6). P. 596–608. https://doi.org/10.1111/opo.12590
  • Julesz B. Foundations of cyclopean perception. Chicago. Univ. Chicago Press, 1971. 406 p.
  • Podugolnikova T.A., Rozhkova G.I., Kondakova I.S. Estimation of visual performance in children with and without binocular anomalies by means of a computerized coding test. Perception. 1997. V. 26 (Supplementary). P. 59.
  • Rozhkova G.I., Vasilyeva N.N. A computer-aided method for the evaluation of fusional reserves with objective control of fusion break. Human Physiology. 2010. V. 36 (3). P. 364–366. https://doi.org/10.1134/S0362119710030187
  • Sassonov O., Sassonov Y., Koslowe K., Shneor E. The effect of test sequence on measurement of positive and negative fusional vergence. Optom Vis Dev. 2010. V. 41. P. 24–27.
  • Shah N., Dakin S.C., Dobinson S., Tufail A., Egan C.A., Anderson R.S. Visual acuity loss in patients with agerelated macular degeneration measured using a novel high-pass letter chart. British Journal of Ophthalmology. 2016. V. 100. P. 1346–1352.
  • Tscherning M. Physiologic optics. Dioptics of the eye, functions of the retina, ocular movements and binocular vision. Philadelphia: Keystone Publishing Co. 1924. P. 150–154.
  • Vasilyeva N.N Correction of binocular visual mechanisms in primary school children with reading difficulties. Perception. 2014. V. 43 (Supplementary). P. 148.
  • Vasilyeva N.N. The use of informational-communicational technologies in reading difficulties correction in children. Procedia - Social and Behavioral Sciences. 2016. V. 233. P. 292–296. https://doi.org/10.1016/j.sbspro.2016.10.132
  • Vasilyeva N.N., Rozhkova G.I. Age dynamics of fusion capabilities assessed by means of RDS with markers for objective control of binocular image splitting. Perception. 2008. V. 37 (Supplementary). P. 102.
  • World Medical Association. Declaration of Helsinki ethical principles for medical research involving human subjects. JAMA. 2013. V. 310 (20). P. 2191–2194. https://doi.org/10.1001/jama.2013.281053