• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Experimental methods to study the sound source localization by distance in humans

© 2023 I. G. Andreeva, V. M. Sitdikov, E. A. Ogorodnikova

Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences 194223 Saint Petersburg, pr. Torez, 44, Russia
Pavlov Institute of Physiology, Russian Academy of Sciences 199034 Saint Petersburg, Makarov emb., 6, Russia

Received 03 Apr 2022

The review presents current methods used for researches of the auditory distance perception. The monaural and binaural cues of stationary and moving sources localization are considered. The role of binaural hearing in estimating the distance to a sound source is discussed in detail. The involvement of localization cues in absolute and relative distance estimation is described. The advantages and limitations of different experimental practices for forming virtual sound images are discussed. The special section discusses approaches to the creation of moving sound images. The results of auditory distance estimations obtained by different methods for stationary and moving sound sources are summarized. The review includes the results of the authors' own studies and a description of promising experimental and applied approaches of this research field.

Key words: spatial hearing, binaural hearing, acoustical virtual reality, minimal audible distance, auditory egocentric distance, motion perception

DOI: 10.31857/S0235009223030022  EDN: WTAATY

Cite: Andreeva I. G., Sitdikov V. M., Ogorodnikova E. A. Eksperimentalnye podkhody k izucheniyu lokalizatsii istochnikov zvuka po rasstoyaniyu [Experimental methods to study the sound source localization by distance in humans]. Sensornye sistemy [Sensory systems]. 2023. V. 37(3). P. 183–204 (in Russian). doi: 10.31857/S0235009223030022

References:

  • Altman J.A. Prostranstvennyi slukh [Spatial hearing]. SanktPetersburg: Institut fiziologii im. I.P. Pavlova RAN, 2011. 311 p. (in Russian).
  • Andreeva I.G. Virtual’naya akusticheskaya real’nost': psikhoakusticheskie issledovaniya [Virtual Acoustical Reality: Psychoacoustical Studies]. Sensornye sistemy [Sensory systems]. 2004a. 18 (3). P. 251–264 (in Russian).
  • Andreeva I.G. Porogovaya dlitel’nost' signalov pri vospriyatii chelovekom radial’nogo dvizheniya zvukovykh obrazov razlichnogo spektral’nogo sostava [Threshold duration of signal in human perception of radial motion of sound image with different spectral bands]. Sensornye sistemy [Sensory systems]. 2004b. V. 18 (3). P. 233–238 (in Russian).
  • Andreeva I.G., Altman J.A. O vospriyatii chelovekom skorosti priblizheniya i udaleniya zvukovogo obraza, dvizhushchegosya pod raznymi azimutal’nymi uglami [On human perception of the speed of approach and removal of a sound image moving at different azimuth angles]. Sensornye sistemy [Sensory systems]. 2001. V. 15 (4). P. 295–300 (in Russian).
  • Andreeva I.G., Gvozdeva A.P. Porogi nepreryvnogo priblizheniya zvukovykh istochnikov s ritmicheskimi strukturami, kharakternymi dlya biologicheski znachimykh zvukovykh signalov [Perception thresholds of continuously approaching sound sources with rhythmic structures specific to biologically significant signals]. Zhurnal evolyutsionnoi biokhimii i fiziologii [Journal of Evolutionary Biochemistry and Physiology]. 2015. V. 51 (1). P. 29–36 (in Russian).
  • Andreeva I.G., Bakhtina A.V., Gvozdeva A.P. Razreshayushchaya sposobnost' slukha cheloveka po rasstoyaniyu pri priblizhenii i udalenii istochnikov zvuka raznogo spektral’nogo sostava [Human’s hearing resolution in case of localizing of approaching and withdrawing sound images with various spectral structures]. Sensornye sistemy [Sensory systems]. 2014. V. 28 (4). P. 3–12 (in Russian).
  • Andreeva I.G., Gvozdeva A.P., Ogorodnikova E.A. Porogovaya dlitel’nost' zvukovykh signalov dlya otsenki priblizheniya i udaleniya ikh istochnika pri modelirovanii snizheniya vysokochastotnogo slukha [Threshold duration of sound signals for their sources approaching and withdrawing under condition of high-frequency hearing loss modeling]. Sensornye sistemy [Sensory systems]. 2018. V. 32 (4). P. 277–284 (in Russian). https://doi.org/10.1134/S0235009218040029
  • Andreeva I.G., Sitdikov V.M., Gvozdeva A.P., Ogorodnikova E.A., Golovanova L.E., Klishova E.A. Sposob skriningovoi otsenki sposobnosti cheloveka k razlicheniyu polozheniya istochnikov zvuka po rasstoyaniyu [Method for screening assessment of a person’s ability to distinguish between the position of sound sources by distance]. Patent RF. № 2754342. 2021 (in Russian).
  • Blauert I. Prostranstvennyi slukh [Spatial hearing]. Moscow: Energiya. 1979. 224 p. (in Russian).
  • Vartanyan I.A., Chernigovskaya T.V. Vliyanie razlichnykh parametrov akusticheskoi stimulyatsii na otsenku chelovekom izmeneniya rasstoyaniya ot istochnika zvuka [Influence of various parameters of acoustic stimulation on human assessment of changes in distance from the sound source]. Fiziologicheskii zhurnal SSSR [Phys iological Journal of the USSR]. 1980. V. 66 (1). P. 101–108 (in Russian).
  • Vartanyan I.A., Andreeva I.G., Mazing A.Yu., Markovich A.M. Otsenka vospriyatiya chelovekom skorosti i uskoreniya priblizheniya i udaleniya istochnika zvuka [Assessment of human perception of the speed and acceleration of the approach and removal of the sound source]. Fiziologiya cheloveka [Human physiology]. 1999. V. 25 (5). P. 38–47 (in Russian).
  • Viskov O.V. O vospriyatii dvizheniya slitnogo slukhovogo obraza. Fiziologiya cheloveka [Human physiology]. 1975. V. 1 (2). P. 371–376 (in Russian).
  • Gvozdeva A.P., Andreeva I.G. Razreshayushchaya sposobnost' slukha cheloveka po rasstoyaniyu pri lokalizatsii priblizhayushchikhsya i udalyayushchikhsya nepreryvnykh i preryvistykh zvukovykh obrazov [Spatial resolution of human auditory system in case of localization of approaching and withdrawing continuous and broken sound images]. Sensornye sistemy [Sensory systems]. 2016. V. 30 (2). P. 114–153 (in Russian).
  • Gvozdeva A.P., Andreeva I.G. Metod otsenki vremennykh pokazatelei prostranstvennogo slukha pri sensonevral’noi tugoukhosti 2–3 stepeni [Method for assessing temporal indicators of spatial hearing in sensorineural hearing loss of 2–3 degrees]. Mat. XXXII Sessii Rossiiskogo Akusticheskogo Obshchestva [Proceedings of the XXXII Session of the Russian Acoustical Society]. Moscow, 2019. P. 113 (in Russian).
  • Kozhevnikova E.V. Nekotorye kharakteristiki vospriyatiya chelovekom priblizhayushchegosya zvukovogo obraza [Some characteristics of human perception of an approaching sound image]. Fiziologicheskii zhurnal SSSR [Physiological Journal of the USSR]. 1980. V. 66 (1). P. 109–112 (in Russian).
  • Kozhevnikova E.V. Otsenka chelovekom skorosti priblizheniya istochnika zvuka [Human estimate of the speed of approach of the sound source]. Fiziologiya cheloveka [Human physiology]. 1985. V. 11 (3). P. 368–373 (in Russian).
  • Kozhevnikova E.V. Vospriyatie priblizheniya i udaleniya zvuka shagov. Usloviya vozniknoveniya pertseptivnogo effekta dvizheniya [Perception of the approach and removal of the sound of footsteps. Conditions for the occurrence of the perceptual effect of movement]. Sensornye sistemy [Sensory systems]. 1989. V. 3 (1). P. 93–100 (in Russian).
  • Ogorodnikova E.A., Pak S.P. Razlichenie chelovekom skorosti dvizheniya pri frontal’nom priblizhenii istochnika zvuka [Distinguishing by a person the speed of movement when the sound source is approached frontally]. Fiziologiya cheloveka [Human physiology]. 1998. V. 24 (2). P. 51–55 (in Russian).
  • Pak S.P., Ogorodnikova E.A. Formirovanie akusticheskikh stimulov, modeliruyushchikh dvizhenie istochnika zvuka pri ego priblizhenii i udalenii [Formation of acoustic stimuli modeling the movement of the sound source approaching and receding]. Sensornye sistemy [Sensory systems]. 1997. V. 11 (3). P. 346–351 (in Russian).
  • Aggius-Vella E., Gori M., Campus C., Moore B.C.J., Pardhan S., Kolarik A.J., Van der Stoep N. Auditory distance perception in front and rear space. Hearing Research. 2022. V. 417. P. 108468. https://doi.org/10.1016/j.heares.2022
  • Ahveninen J., Kopčo N., Jääskeläinen I.P. Psychophysics and neuronal bases of sound localization in humans. Hearing research. 2014. V. 307. P. 86–97. https://doi.org/10.1016/j.heares.2013.07.008
  • Akeroyd M.A., Gatehouse S., Blaschke J. The detection of differences in the cues to distance by elderly hearingimpaired listeners. J. Acoust. Soc. Am. 2007. V. 121. № 2. P. 1077–1089. https://doi.org/10.1121/1.2404927
  • Altman J.A., Andreeva I.G. Monaural perception and binaural perception of approaching and withdrawing auditory images in humans. Int. J. Audiol. 2004. V. 43. № 4. P. 227–235. https://doi.org/10.1080/14992020400050031
  • Andreeva I.G. Spatial Selectivity of Hearing in Speech Recognition in Speech-shaped Noise Environment. Hum Physiol. 2018. V. 44. № 2. P. 226–236. https://doi.org/10.1134/S0362119718020020
  • Andreeva I.G., Dymnikowa M., Gvozdeva A.P., Ogorodnikova E.A., Pak S.P. Spatial separation benefit for speech detection in multi-talker babble-noise with different egocentric distances. Acta Acustica united with Acustica. 2019. V. 105. № 3. P. 484–491. https://doi.org/10.3813/AAA.919330
  • Andreeva I.G., Klishova E.A., Gvozdeva A.P., Sitdikov V.M., Golovanova L.E., Ogorodnikova E.A. Comparative assessment of spatial and temporal resolutions in the localization of an approaching and receding broadband noise source in healthy subjects and patients with first-degree symmetric sensorineural hearing loss. Human Physiology. 2020. V. 46. № 5. P. 465–472. https://doi.org/10.1134/S0362119720040039
  • Armstrong C., Thresh L., Murphy D., Kearney G.A. Perceptual evaluation of individual and non-individual HRTFs: A case study of the SADIE II database. Appl. Sci. 2018. V. 8. P. 2029. https://doi.org/10.3390/app8112029
  • Ashmead D.H., Leroy D., Odom R.D. Perception of the relative distances of nearby sound sources. Perception & Psychophysics. 1990. V. 47. P. 326–331. https://doi.org/10.3758/BF03210871
  • Begault D.R. Preferred sound intensity increase for sensation of half distance. Perceptual and motor skills. 1991. V. 72. № 3. P. 1019–1029. https://doi.org/10.2466/pms.1991.72.3.1019
  • Begault D.R., Wenzel E.M., Anderson M.R. Direct Comparison of the Impact of Head Tracking, Reverberation, and Individualized Head-Related Transfer Functions on the Spatial Perception of a Virtual Speech Source. J. Audio Eng. Soc. 2001. V. 49. P. 904–916.
  • Bertelson P., Radeau M. Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Percept. Psychophys. 1981. V. 29. P. 578–584. https://doi.org/10.3758/bf03207374
  • Best V., Baumgartner R., Lavandier M., Majdak P., Kopčo N. Sound Externalization: A Review of Recent Research. Trends in Hearing. 2020. V. 24. https://doi.org/10.1177/2331216520948390
  • Blauert J. Spatial Hearing: The Psychophysics of Human Sound Localization. Cambridge. MIT Press, 1997. 494 p.
  • Bronkhorst A.W. The cocktail-party problem revisited: Early processing and selection of multi-talker speech. Attention, Perception, & Psychophysics. 2015. V. 77. № 5. P. 1465–1487. https://doi.org/10.3758/s13414-015-0882-9
  • Brungart D.S., Rabinowitz W.M., Durlach N.I. Auditory localization of a nearby point source. J Acoust Soc Am. 1996. V. 100. P. 2593. https://doi.org/10.1121/1.417577
  • Brungart D.S. Rabinowitz W.M. Auditory localization of nearby sources. Head-related transfer functions. J. Acoust. Soc. Am. 1999. V. 106. P. 1465–1479. https://doi.org/10.1121/1.427180
  • Butler R.A., Levy E.T., Neff W.D. Apparent distance of sounds recorded in echoic and anechoic chambers. Journal of Experimental Psychology: Human Perception and Performance. 1980. V. 6. № 4. P. 745. https://doi.org/10.1037/0096-1523.6.4.745
  • Calamia P.T., Hixson E.L. Measurement of the head-related transfer function at close range. J. Acoust. Soc. Am. 1997. V. 102. P. 3117. https://doi.org/10.1121/1.420569
  • Carlile S., Leung J. The perception of auditory motion. Trends in hearing. 2016. V. 20. P. 2331216516644254. https://doi.org/10.1177/2331216516644254
  • Catic J., Santurette S., Buchholz J.M., Gran F., Dau T. The effect of interaural-level-difference fluctuations on the externalization of sound. The Journal of the Acoustical Society of America. 2013. V. 134. № 2. P. 1232–1241. https://doi.org/10.1121/1.4812264
  • Chabot-Leclerc A., MacDonald E.N., Dau T. Predicting binaural speech intelligibility using the signal-to-noise ratio in the envelope power spectrum domain. The Journal of the Acoustical Society of America. 2016. V. 140. № 1. P. 192–205.
  • Cochran P., Throop J., Simpson W.E. Estimation of distance of a source of sound. The American journal of psychology. 1968. V. 81. № 2. P. 198–206. https://doi.org/10.2307/1421264
  • Coleman P.D. Failure to localize the source distance of an unfamiliar sound. J. Acoust. Soc. Am. 1962. V. 34. P. 345–346.
  • Coleman P.D. An analysis of cues to auditory depth perception in free space. Psychological Bulletin. 1963. V. 60. № 3. P. 302–315. https://doi.org/10.1037/h0045716
  • Coudert A., Verdelet G., Reilly K.T., Truy E., Gaveau V. Intensive Training of Spatial Hearing Promotes Auditory Abilities of Bilateral Cochlear Implant Adults: A Pilot Study. Ear and Hearing. 2022. https://doi.org/10.1097/AUD.0000000000001256
  • Duda R.O., Martens W.L. Range dependence of the response of a spherical head model. J. Acoust. Soc. Am. 1998. V. 104. № 5. P. 3048–3058. https://doi.org/10.1121/1.423886
  • Edwards A.S. Accuracy of auditory depth perception. Journal of General Psychology. 1955. V. 52. P. 327–329. https://doi.org/10.1080/00221309.1955.9920247
  • Fontana F., Rocchesso D. Auditory distance perception in an acoustic pipe. ACM Transactions on Applied Perception. 2008. V. 5. № 3. P. 1–15. https://doi.org/10.1145/1402236.1402240
  • Gardner M.B. Distance Estimation of 0° or Apparent 0° – Oriented Speech Signals in Anechoic Space. J. Acoust. Soc. Am. 1969. V. 45. № 1. P. 47–53. https://doi.org/10.1121/1.1911372
  • Gordon M.S., Russo F.A., MacDonald E. Spectral information for detection of acoustic time to arrival. Attention Perception & Psychophysics. 2013. V. 75. № 4. P. 738–750. https://doi.org/10.3758/s13414-013-0424-2
  • Grantham D.W. Detection and discrimination of simulated motion of auditory targets in the horizontal plane. The Journal of the Acoustical Society of America. 1986. V. 79. № 6. P. 1939–1949. https://doi.org/10.1121/1.393201
  • Guo Z., Lu Y., Wang L., Yu G. Discrimination experiment of sound distance perception for a real source in nearfield. EAA Spatial Audio Signal Processing Symposium. 2019. P. 85–89. https://doi.org/10.25836/sasp.2019.25
  • Gvozdeva A.P., Andreeva I.G. The Minimum Audible Movement Distance for Localization of Approaching and Receding Broadband Noise with a Reduced Fraction of High-Frequency Spectral Components Typical of Prebyscusis. Journal of Evolutionary Biochemistry and Physiology. 2019. V. 55. № 6. P. 463–474. https://doi.org/10.1134/S0022093019060048
  • Hall D.A., Moore D.R. Auditory neuroscience: The salience of looming sounds. Current Biology, 2003. V. 13. № 3. P. R91–R93. https://doi.org/10.1016/s0960-9822(03)00034-4
  • Hartley R.V.L., Fry T.C. The Binaural Location of Pure Tones. Physical Review. 1921. V. 18. № 6. P. 431. https://doi.org/10.1103/PhysRev.18.431
  • Hartmann W.M., Wittenberg A. On the externalization of sound images. J. Acoust. Soc. Am. 1996. V. 99. № 6. P. 3678–3688. https://doi.org/10.1121/1.414965
  • Haustein B.G. Hypothesen über die einohrige Entfernungswahrnehmung des menschlichen Gehörs (Hypotheses about the perception of distance in human hearing with one ear). Hochfrequenztech. u. Elektroakustik. 1969. V. 78. P. 46–57.
  • Hirsch R.H. Perception of the range of a sound source of unknown strength. J. Acoust. Soc. Am. 1968. V. 43. P. 373–374. https://doi.org/10.1121/1.1910789
  • Holt R.E., Thurlow W.R. Subject orientation and judgment of distance of a sound source. Acoust. Soc. Am. 1969. V. 46. № 6B. P. 1584–1585. https://doi.org/10.1121/1.1911909
  • Jenny C., Reuter C. Usability of individualized head-related transfer functions in virtual reality: Empirical study with perceptual attributes in sagittal plane sound localization. JMIR Serious Games. 2020. V. 8. P. e17576. https://doi.org/10.2196/17576
  • Kearney G., Gorzel M., Rice H., Boland F. Distance perception in interactive virtual acoustic environments using first and higher order ambisonic sound fields. Acta Acustica united with Acustica. 2012. V. 98. P. 61–71. https://doi.org/10.3813/AAA.918492
  • Kim H-Y., Suzuki Y., Takane S., Sone T. Control of auditory distance perception based on the auditory parallax model. Applied Acoustics. 2001. V. 62. Is. 3. P. 245–270. https://doi.org/10.1016/S0003-682X(00)00023-2
  • Kolarik A.J., Moore B.C.J., Zahorik P., Cirstea S., Pardhan S. Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Atten. Percept. Psychophys. 2016. V. 78. № 2. P. 373–395. https://doi.org/10.3758/s13414-015-1015-1
  • Kolarik A.J., Raman R., Moore B.C.J., Cirstea S., Gopalakrishnan S., Pardhan S. The accuracy of auditory spatial judgments in the visually impaired is dependent on sound source distance. Scientific Reports. 2020. V. 10. P. 7169. https://doi.org/10.1038/s41598-020-64306-8
  • Kopčo N., Shinn-Cunningham B.G. Spatial unmasking of nearby pure-tone targets in a simulated anechoic environment. The Journal of the Acoustical Society of America. 2003. V. 114. № 5. P. 2856–2870. https://doi.org/10.1121/1.1616577
  • Kopčo N., Shinn-Cunningham B.G. Effect of stimulus spectrum on distance perception for nearby sourcesa). Acoust. Soc. Am. 2011. V. 130. № 3. P. 1530–1541 https://doi.org/10.1121/1.3613705
  • Koroleva I.V., Ogorodnikova E.A. Chapter 30: Modern achievements in cochlear and brainstem auditory implantation. In: Neural Networks and Neurotechnologies (eds: Yu. Shelepin, E. Ogorodnikova, N. Solovyev, E. Yakimova). SPb, Publish by VVM, 2019. P. 231–249.
  • Lambert R.M. Dynamic theory of sound-source localization. J. Acoust. Soc. Am. 1974. V. 56. P. 165–171. https://doi.org/10.1121/1.1903248
  • Liu Y., Xie B.S. Auditory discrimination on the distance dependence of near-field head-related transfer function magnitudes. Proc. Mtgs. Acoust. 2013. V. 19. P. 050048. https://doi.org/10.1121/1.4799196
  • Lounsbury B.F., Butler R.A. Estimation of distances of recorded sounds presented through headphones. Scandinavian audiology. 1979. V. 8. № 3. P. 145–149. https://doi.org/10.3109/01050397909076315
  • Lundbeck M., Grimm G., Hohmann V., Laugesen S., Neher T. Sensitivity to angular and radial source movements as a function of acoustic complexity in normal and impaired hearing. Trends in hearing. 2017. V. 21. P. 2331216517717152. https://doi.org/10.1177/2331216517717152
  • Marrone N., Mason C.R., Kidd Jr.G. The effects of hearing loss and age on the benefit of spatial separation between multiple talkers in reverberant rooms. The Journal of the Acoustical Society of America. 2008. V. 124. № 5. P. 3064–3075. https://doi.org/10.1121/1.2980441
  • McAnally K.I., Martin R.L. Sound localization with head movement: Implications for 3-d audio displays. Front. Neurosci. 2014. V. 8. P. 1–6. https://doi.org/10.3389/fnins.2014.00210
  • Mershon D.H., Bowers J.N. Absolute and relative cues for the auditory perception of egocentric distance. Perception. 1979. V. 8. № 3. P. 311–322. https://doi.org/10.1068/p080311
  • Mershon D.H., King L.E. Intensity and reverberation as factors in the auditory perception of egocentric distance. Perception & Psychophysics. 1975. V. 18. № 6. P. 409–415. https://doi.org/10.3758/BF03204113
  • Mershon D.H., Ballenger W.L., Little A.D., McMurtry P.L., Buchanan J.L. Effects of room reflectance and background noise on perceived auditory distance. Perception. 1989. V. 18. № 3. P. 403–416. https://doi.org/10.1068/p180403
  • Middlebrooks J.C. Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. J. Acoust. Soc. Am. 1999. V. 106. P. 1493–1510 https://doi.org/10.1121/1.427147
  • Middlebrooks J.C. Sound localization. Handbook of clinical neurology. 2015. V. 129. P. 99–116. https://doi.org/10.1016/B978-0-444-62630-1.00006-8
  • Middlebrooks J.C., Green D.M. Sound localization by human listeners. Annual review of psychology. 1991. V. 42. № 1. P. 135–159. https://doi.org/10.1146/annurev.ps.42.020191.001031
  • Molino J. Perceiving the Range of a Sound Source When the Direction is Known. J. Acoust. Soc. Am. 1973. V. 53. P. 1301–1304. https://doi.org/10.1121/1.1913469
  • Møller H., Sørensen M.F., Hammershøi D., Jensen C.B. Head-Related Transfer Functions of Human Subjects. J. Audio Eng. Soc. 1995. V. 43. P. 300–321.
  • Moore B.C.J. An Introduction to the Psychology of Hearing. Leiden. Brill. 2012. 442 p.
  • Moore D.R., King A.J. Auditory perception: The near and far of sound localization. Current Biology. 1999. V. 9. № 10. P. R361–R363. https://doi.org/10.1016/S0960-9822(99)80227-9
  • Naguib M., Wiley R.H. Estimating the distance to a source of sound: mechanisms and adaptations for long-range communication. Animal behavior. 2001. V. 62. № 5. P. 825–837. https://doi.org/10.1006/anbe.2001.1860
  • Neuhoff J.G. Perceptual bias for rising tones. Nature. 1998. V. 395. № 6698. P. 123–124. https://doi.org/10.1038/25862
  • Oberem J., Richter J.G., Setzer D., Seibold J., Koch I., Fels. J. Experiments on localization accuracy with nonindividual and individual HRTFs comparing static and dynamic reproduction methods. bioRxiv. 2020. P. 1–11. https://doi.org/10.1101/2020.03.31.011650
  • Otani M., Hirahara T., Ise S. Numerical study on sourcedistance dependency of head-related transfer functions. The Journal of the Acoustical Society of America. 2009. . 125. № 5. P. 3253–3261. https://doi.org/10.1121/1.3111860
  • Parseihian G., Jouffrais C., Katz B.F. Reaching nearby sources: Comparison between real and virtual sound and visual targets. Frontiers in Neuroscience. 2014. V. 8. P. 269. https://doi.org/10.3389/fnins.2014.00269
  • Pelzer R., Dinakaran M., Brinkmann F., Lepa, S., Grosche P., Weinzierl S. Head-related transfer function recommendation based on perceptual similarities and anthropometric features. J. Acoust. Soc. Am. 2020. V. 148. P. 3809–3817 https://doi.org/10.1121/10.0002884
  • Perrott D.R., Ambarsoom H., Tucker J. Changes in head position as a measure of auditory localization performance: Auditory psychomotor coordination under monaural and binaural listening conditions. J. Acoust. Soc. Am. 1987. V. 82. № 5. P. 1637. https://doi.org/10.1121/1.395155
  • Perrott D.R., Costantino B., Cisneros J. Auditory and visual localization performance in a sequential discrimination task. The Journal of the Acoustical Society of America. 1993. V. 93. № 4. P. 2134–2138. https://doi.org/10.1121/1.406675
  • Petersen J. Estimation of loudness and apparent distance of pure tones in a free field. Acta Acustica united with Acustica. 1990. V. 70. № 1. P. 61–65.
  • Risoud M., Hanson J.N., Gauvrit F., Renard C., Lemesre P.E., Bonne N.X., Vincent C. Sound source localization. European annals of otorhinolaryngology, head and neck diseases. 2018. V. 135. № 4. P. 259–264. https://doi.org/10.1016/j.anorl.2018.04.009
  • Rosenblum L.D., Carello C., Pastore R.E. Relative effectiveness of three stimulus variables for locating a moving sound source. Perception. 1987. V. 16. № 2. P. 175–186. https://doi.org/10.1068/p160175
  • Rummukainen O.S., Robotham T., Habets E.A. Head-Related Transfer Functions for Dynamic Listeners in Virtual Reality. Applied Sciences. 2021. V. 11. № 14. P. 6646. https://doi.org/10.3390/app11146646
  • Russell M.K. Age and Auditory Spatial Perception in Humans: Review of Behavioral Findings and Suggestions for Future Research. Front. Psychol. 2022. V. 13. P. 831670. https://doi.org/10.3389/fpsyg.2022.831670
  • Saberi K., Perrott D.R. Lateralization thresholds obtained under conditions in which the precedence effect is assumed to operate. Journal of the Acoustical Society of America. 1990. V. 87. P. 1732–1737. https://doi.org/10.1121/1.399422
  • Seifritz E., Neuhoff J.G., Bilecen D., Scheffler K., Mustovic H. Neural processing of auditory looming in the human brain. Current Biology. 2002. V. 12. P. 2147–2151. https://doi.org/10.1016/S0960-9822(02)01356-8
  • Shinn-Cunningham B.G., Santarelli S., Kopco N. Tori of confusion: Binaural localization cues for sources within reach of a listener. The Journal of the Acoustical Society of America. 2000. V. 107. № 3. P. 1627–1636. https://doi.org/10.1121/1.428447
  • Shinn-Cunningham B.G., Streeter T., Gyss J.F. Perceptual plasticity in spatial auditory displays. ACM Transactions on Applied Perception (TAP). 2005. V. 2. № 4. P. 418–425. https://doi.org/10.1145/1101530.1101536
  • Simpson W.E., Stanton L.D. Head movement does not facilitate perception of the distance of a source of sound. The American journal of psychology. 1973. V. 86. № 1. P. 151–159. https://doi.org/10.2307/1421856
  • Stevens S.S., Guirao M. Loudness, reciprocality, and partition scales. Acoust. Soc. Am. 1962. V. 34. № 9B. P. 1466–1471. https://doi.org/10.1121/1.1918370
  • Strybel T.Z., Perrott D.R. Discrimination of relative distance in the auditory modality: The success and failure of the loudness discrimination hypothesis. J. Acoust. Soc. Am. 1984. V. 76. № 1. P. 318–320. https://doi.org/10.1121/1.391064
  • Strybel T.Z., Manligas C.L., Perrott D.R. Auditory apparent motion under binaural and monaural listening conditions. Perception & Psychophysics. 1989. V. 45. № 4. P. 371–377. https://doi.org/10.3758/BF03204951
  • Strybel T.Z., Manligas C.L., Chan O., Perrott D.R. A comparison of the effects of spatial separation on apparent motion in the auditory and visual modalities. Perception & Psychophysics. 1990. V. 47. № 5. P. 439–448. https://doi.org/10.3758/BF03208177
  • Strybel T.Z., Manllgas C.L., Perrott D.R. Minimum audible movement angle as a function of the azimuth and elevation of the source. Human factors. 1992. V. 34. № 3. P. 267–275. https://doi.org/10.1177/001872089203400302
  • Vartanyan I.A., Andreeva I.G. A psychophysiological study of auditory illusions of approach and withdrawal in the context of the perceptual environment. The Spanish journal of psychology. 2007. V. 10. № 2. P. 266–276. https://doi.org/10.1017/S1138741600006533
  • von Békésy G. The moon illusion and similar auditory phenomena. The American journal of psychology. 1949. V. 62. № 4. P. 540–552. https://doi.org/10.2307/1418558
  • Warren R.M. Auditory perception: A new analysis and synthesis. Cambridge, UK. Cambridge University Press, 1999. 241 p.
  • Wenzel E.M., Arruda M., Kistler D.J., Wightman F.L. Localization using nonindividualized head-related transfer functions. J Acoust Soc Am. 1993. V. 94. P. 111–23. https://doi.org/10.1121/1.407089
  • Westermann A., Buchholz J.M. Release from masking through spatial separation in distance in hearing impaired listeners. In: Proceedings of Meetings on Acoustics ICA2013. Acoustical Society of America. 2013. V. 19. № 1. P. 050156. https://doi.org/10.1121/1.4906581
  • Wightman E.R., Firestone F.A. Binaural localization of pure tones. The Journal of the Acoustical Society of America. 1930. V. 2. № 2. P. 271–280. https://doi.org/10.1121/1.1915255
  • Yu G., Wang L. Effect of Individualized Head-Related Transfer Functions on Distance Perception in Virtual Reproduction for a Nearby Sound Source. Archives of Acoustics. 2019. V. 44. № 2. P. 251–258. https://doi.org/10.24425/aoa.2019.128488
  • Zahorik P. Assessing auditory distance perception using virtual acoustics. J. Acoust. Soc. Am. 2002. V. 111. P. 1832–1846. https://doi.org/10.1121/1.1458027
  • Zahorik P., Wightman F.L. Loudness constancy with varying sound source distance. Nature Neuroscience. 2001. V. 4. P. 78–83. https://doi.org/10.1038/82931
  • Zahorik P., Brungart D.S., Bronkhorst A.W. Auditory distance perception in humans: A summary of past and present research. Acta Acustica united with Acustica. 2005. V. 91. № 3. P. 409–420.
  • Zhang M., Qiao Y., Wu X., Qu T. Distance-dependent Modeling of Head-related Transfer Functions. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019. P. 276–280. https://doi.org/10.1109/ICASSP.2019.8683756
  • Zhong X.L., Xie B.S. Head-related transfer functions and virtual auditory display. In: Soundscape Semiotics-Localization and Categorization. 2014. https://doi.org/10.5772/56907