We aimed at demonstrating the direct physiological effects of octopamine on the auditory responses of the Johnston’s
organ sensory neurons in Culex pipiens pipiens mosquitoes. Responses to acoustic stimulation were measured as the
frequency-threshold curves and as an instantly recorded autoexcitation frequency before and after the injection of
octopamine (or chlordimeform, an agonist of octopamine receptors). The autoexcitation frequency was assessed by
including the auditory neurons into a positive feedback loop, when the amplified neuronal response was used to drive the
stimulating loudspeaker. Our results indicate that: octopamine affects the properties of the auditory system both in
male and female mosquitoes; in female mosquitoes, octopamine significantly reduces the sensitivity of auditory neurons
below 90 Hz and produces little effect in the high-frequency range (100 Hz and above); in male mosquitoes, octopamine
significantly raises the tuning frequency of the auditory system (ratio of tuning frequencies before and after the
injection 1.32–1.55). There is a strong sexual dimorphism in the octopaminergic modulation of the mosquito auditory
system. The observed physiological effects of octopamine, both in male and female mosquitoes, cannot be fully explained
by the modulation of mechanical stiffness of the antenna and must include the changes in frequency tuning of the
auditory neurons.
Key words:
Culex, mosquitoes, Johnston’s organ, auditory neurons, frequency tuning
DOI: 10.31857/S0235009223030071
EDN: ZYGYYZ
Cite:
Vorontsov D. D., Lapshin D. N.
Vliyanie oktopamina na chastotnuyu nastroiku slukhovoi sistemy komarov culex pipiens pipiens (diptera, culicidae)
[Effect of octopamine on the frequency tuning of the auditory system in culex pipiens pipiens mosquito (diptera, culicidae)].
Sensornye sistemy [Sensory systems].
2023.
V. 37(3).
P. 244–257 (in Russian). doi: 10.31857/S0235009223030071
References:
- Apasov S.R., Zhantiev R.D., Tamarina N.A., Federova M.V. Akusticheskaja orientacija samcov Aedes diantaeus pri sparivanii [Acoustic orientation of Aedes diantaeus males during pairing]. Parazitologiya [Parasitology]. 1986. V. 20. № 5. P. 351–355.
- Lapshin D.N. Sluhovaja sistema samok krovososushhih komarov (Diptera, Culicidae): akusticheskoe vosprijatie v uslovijah imitacii poljota. [Auditory system of blood-sucking mosquito females (Diptera, Culicidae): acoustic perception during the flight simulation]. Jentomologicheskoe obozrenie [Entomological review]. 2012. V. 91. № 3. P. 465–484.
- Lapshin D.N. Prostranstvennaja i chastotnaja izbiratel’nost' sluhovyh receptorov komarov-zvoncov (Diptera, Chironomidae) [Directional and frequency characteristics of auditory receptors in midges (Diptera, Chironomidae)]. Jentomologicheskoe obozrenie [Entomological review]. 2015. V. 94. № 4. P. 761–776.
- Sitnik V.V. Vlijanie massiva rastitel’nosti na rasprostranenie akusticheskih vozmushhenij [A forestry influence on an acoustic perturbance propagation]. Matematicheskoye modelirovaniye [Math modeling]. 2007. V. 19. № 8. P. 90–96 (in Russian).
- Aldersley A., Cator L.J. Female resistance and harmonic convergence influence male mating success in Aedes aegypti. Scientific Reports. 2019. V. 9 (2145). https://doi.org/10.1038/s41598-019-38599-3
- Andrés M., Seifert M., Spalthoff C., Warren B., Weiss L., Giraldo D., Winkler M., Pauls S., Go M. Göpfert M.C. Auditory efferent system modulates mosquito hearing. Current Biology. 2016. V. 26. P. 1–9. https://doi.org/10.1016/j.cub.2016.05.077
- Andrés M., Su M.P., Albert J., Cator L.J. Buzzkill: targeting the mosquito auditory system. Current Opinion in Insect Science. 2020. V. 40. P. 11–7. https://doi.org/10.1016/j.cois.2020.04.003
- Bartlett-Healy K., Crans W., Gaugler R. Phonotaxis to amphibian vocalizations in Culex territans (Diptera: Culicidae). Annals of the Entomological Society of America. 2008. V. 101. P. 95–103. https://doi.org/10.1603/0013-8746(2008)101[95:PTAVIC]2.0.CO;2
- Boo K.S., Richards A.G. Fine structure of the scolopidia in the johnston’s organ of male Aedes aegypti (L.) (Diptera: Culicidae). Int. J. Insect Morphol. Embryol. 1975. V. 4. P. 549–566. https://doi.org/10.1016/0020-7322(75)90031-8
- Boo K.S., Richards A.G. Fine structure of scolopidia in Johnston’s organ of female Aedes aegypti compared with that of the male. J. Insect Physiology. 1975. V. 21. P. 1129–1139. https://doi.org/10.1016/0022-1910(75)90126-2
- Feugère L., Simões P.M.V., Russell I.J., Gibson G. The role of hearing in mosquito behaviour. Chapter 26. In: Ignell R., Lazzari C.R., Lorenzo M.G., Hill S.R. (eds.) Sensory ecology of disease vectors. Wageningen Academic Publishers, Wageningen, the Netherlands. 2022. P. 683–708. https://doi.org/10.3920/978-90-8686-932-9_26
- Finetti L., Paluzzi J.P., Orchard I., Lange A.B. Octopamine and tyramine signalling in Aedes aegypti: Molecular characterization and insight into potential physiological roles. PloS one. 2023. V. 18. № 2. e0281917. https://doi.org/10.1371/journal.pone.0281917
- Fyodorova M.V., Azovsky A.I. Interactions between swarming Chironomus annularius (Diptera: Chironomidae) males: Role of acoustic behavior. J. Insect Behav. 2003. V. 16. № 2. P. 295–306. https://doi.org/10.1023/A:1023976120723
- Georgiades M., Alampounti C.A., Somers J., Su M., Ellis D., Bagi J., Ntabaliba W., Moore S., Albert J.T., Andrés M. A novel beta-adrenergic like octopamine receptor modulates the audition of malaria mosquitoes and serves as insecticide. URL: https://www.biorxiv.org/content/10.1101/ 2022.08.02.502538v1 (accessed 08.02.2022) (preprint). https://doi.org/10.1101/2022.08.02.502538
- Gibson G., Russell I.J. Flying in tune: sexual recognition in mosquitoes. Current Biology. 2006. V. 16. № 13. P. 1311–1316. https://doi.org/10.1016/j.cub.2006.05.053
- Gibson G., Warren B., Russell I. Humming in tune: sex and species recognition by mosquitoes on the wing. J. Association for Research in Otolaryngology. 2010. V. 11. P. 527–540. https://doi.org/10.1007/s10162-010-0243-2
- Göpfert M.C., Briegel H., Robert D. Mosquito hearing: sound-induced antennal vibrations in male and female Aedes aegypti. J. Experimental Biology. 1999. V. 202. P. 2727–2738. https://doi.org/10.1242/jeb.202.20.2727
- Göpfert M.C., Humphris A.D., Albert J.T., Robert D., Hendrich O. Power gain exhibited by motile mechanosensory neurons in Drosophila ears. Proc. Natl. Acad. Sci. USA. 2005. V. 102. № 2. P. 325–330. https://doi.org/10.1073/pnas.0405741102
- Hammer O., Harper D.A., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica. 2001. V. 4. № 1. P. 9.
- Hart M., Belton P., Kuhn R. The Risler manuscript. European mosquito. European Mosquito Bulletin. 2011. V. 29. P. 103–113.
- Lapshin D.N. Auditory system of blood-sucking mosquito females (Diptera, Culicidae): acoustic perception during the flight simulation. Entomological Review. 2013. V. 93. № 2. P. 135–149. https://doi.org/10.1134/S0013873813020012
- Lapshin D.N. Directional and frequency characteristics of auditory receptors in midges (Diptera, Chironomidae). Entomological Review. 2015. V. 95. P. 1155–1165. https://doi.org/10.1134/S001387381509002X
- Lapshin D.N., Vorontsov D.D. Frequency tuning of individual auditory receptors in female mosquitoes (Diptera, Culicidae). J. Insect Physiology. 2013. V. 59. P. 828–839. https://doi.org/10.1016/j.jinsphys.2013.05.010
- Lapshin D.N., Vorontsov D.D. Frequency organization of the Johnston’s organ in male mosquitoes (Diptera, Culicidae). J. Experimental Biology. 2017. V. 220. P. 3927–3938. https://doi.org/10.1242/jeb.152017
- Lapshin D.N., Vorontsov D.D. Mapping the auditory space of Culex pipiens female mosquito in 3D. URL: https://www.biorxiv.org/content/10.1101/2023.01.09. 523250v1 (accessed 09.01.2023) (preprint). https://doi.org/10.1101/2023.01.09.523250
- Legett H.D., Aihara I., Bernal X.E. Within host acoustic signal preference of frog-biting mosquitoes (Diptera: Culicidae) and midges (Diptera: Corethrellidae) on Iriomote Island, Japan. Entomological Science. 2021. V. 24. № 2. P. 116–122. https://doi.org/10.1111/ens.12455
- Loh Y.M., Su M.P., Ellis D.A., Andrés M. The auditory efferent system in Mosquitoes. Frontiers in Cell and Developmental Biology. 2023. V. 11–1123738.11. P. 1–15. https://doi.org/10.3389/fcell.2023.1123738
- Mukundarajan H., Hol F.J.H., Castillo E.A., Newby C., Prakash M. Using mobile phones as acoustic sensors for high-throughput mosquito surveillance. Ecology Epidemiology and Global Health. 2017. V. 6–e27854. https://doi.org/10.7554/eLife.27854
- Ogawa K., Sato H. Relationship between male acoustic response and female wingbeat frequency in a chironomid midge, Chironomus yoshimatsui (Diptera : Chironomidae). Jpn. J. Sanit. Zool. 1993. V. 44. № 4. P. 355–360. https://doi.org/10.7601/mez.44.355
- Pantoja-Sánchez H., Vargas J.F., Ruiz-López F., RúaUribe G., Vélez V., Kline D.V., Bernal X.E. A new approach to improve acoustic trapping effectiveness for Aedes aegypti (Diptera: Culicidae). Journal of Vector Ecology. 2019. V. 44. № 2. P. 216–222. https://doi.org/10.1111/jvec.12352
- Simões P.M., Gibson G., Russell I.J. Pre-copula acoustic behaviour of males in the malarial mosquitoes Anopheles coluzzii and Anopheles gambiae s.s. does not contribute to reproductive isolation. J. Experimental Biology. 2017. V. 220. № 3. P. 379–385. https://doi.org/10.1242/jeb.149757
- Su M.P., Andrés M., Boyd-Gibbins N., Somers J., Albert J.T. Sex and species specific hearing mechanisms in mosquito flagellar ears. Nature Communications. 2018. V. 9. № 1. P. 3911.
- Toma T., Takara T., Miyagi I., Futami K., Higa Y. Mosquitoes and frog-biting midges (Diptera: Culicidae and Corethrellidae) attracted to traps with natural frog calls and synthesized sounds at Iriomote Island, Ryukyu Archipelago, Japan. Medical Entomology and Zoology. 2019. V. 70. № 4. P. 221–234. https://doi.org/0.7601/mez.70.221
- Warren B., Gibson G., Russell I.J. Sex recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion. Current Biology. 2009. V. 9. P. 485–491. https://doi.org/10.1016/j.cub.2009.01.059
- Warren B., Lukashkin A.N., Russell I.J. The dynein–tubulin motor powers active oscillations and amplification in the hearing organ of the mosquito. Proceedings of the Royal Society B. 2010. V. 277. P. 1761–1769. https://doi.org/10.1098/rspb.2009.2355