• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Behavioural responses of cockroaches Periplaneta americana L. to short and long wavelength light in a wind tunnel

© 2023 M. I. Zhukovskaya, A. V. Shchenikova, O. G. Selitskaya, A. A. Miltsyn, E. S. Novikova, A. N. Frolov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences 104223 St. Petersburg, Thorez Ave, 44, Russia
All-Russian Institute of Plant Protection, Russian Academy of Sciences St. 196608 St. Petersburg – Pushkin, Podbelskogo road, 3, Russia

Received 15 May 2023

The behavioural responses of the American cockroach Periplaneta americana to short-wavelength and longwavelength light were studied in a wind tunnel. Initial directional movement towards the light source was observed in response to both stimuli, but the latency in response to green light was significantly shorter. The cockroaches moving towards the UV light often returned to the less illuminated starting point, while this behaviour was not typical under green light. UV light often initiated masking, the behavior characteristic of the inactive, diurnal phase of the 24-hour cycle.

Key words: American cockroach, Periplaneta americana, light response, UV-light, green light, photoreception

DOI: 10.31857/S0235009223030083  EDN: UGWKWM

Cite: Zhukovskaya M. I., Shchenikova A. V., Selitskaya O. G., Miltsyn A. A., Novikova E. S., Frolov A. N. Povedencheskie reaktsii tarakanov periplaneta americana l. na korotko- i dlinnovolnovyi svet v vetrovom tonnele [Behavioural responses of cockroaches periplaneta americana l. to short and long wavelength light in a wind tunnel]. Sensornye sistemy [Sensory systems]. 2023. V. 37(3). P. 235–243 (in Russian). doi: 10.31857/S0235009223030083

References:

  • Gornostaev G.N. Vvedenie v etologiju nasekomyh-fotoksenov(let nasekomyh na iskusstvennye istochniki sveta). Introduction to Ethology of Photoxenic Insects (Flight of Insects towards Artificial Sources of Light), in Etologiya nasekomykh (Ethology of Insects), Leningrad: Nauka, 1984, vol. 66, pp. 101–167.
  • Gribakin F.G. Mehanizmy fotorecepcii nasekomyh [Mechanisms of photoreception in insects]. Leningrad. Nauka, 1981. 213 p. (in Russian).
  • Dremova V.P., Alesho N.A. Tarakany. Biologija, jekologija, sanitarno-jepidemiologicheskoe znachenie, kontrol'’chislennosti sinantropnyh tarakanov [Cockroaches. Biology, ecology, sanitary and epidemiological significance, control of the number of synanthropic cockroaches]. Moscow. KMK Scientific Press Ltd., 2011. 305 p. (in Russian).
  • Zhukovskaya M.I. Behavioral evidence for a cockroach (Periplaneta americana) aggregation pheromone. J. Evol. Biochem. Physiol. 1991. V. 27 (5). P. 496–500 (in Russian).
  • Zhukovskaya M.I., Novikova E.S., Severina I.Y., Isavnina I.L. Daunreguljacija zritel’nyh pigmentov tarakana s pomoshh’ju metoda RNK-interferencii [Downregulation of cockroach visual pigments by RNA interference]. J. Evol. Biochem. Physiol. 2020. V. 56 (7). P. 587–597. https://doi.org/10.31857/S0044452920071353 (in Russian).
  • Zhukovskaya M.I., Severina I.Yu., Novikova Ye.S. Anthropogenic light pollution: impact on insects. Biosfera. 2022. V. 14 (2). P. 126–136. https://doi.org/10.24855/biosfera.v14i2.669 (in Russian).
  • Mazokhin-Porshnyakov G.A. Zrenie nasekomyh [Insect vision]. Moscow. Nauka, 1965. 264 p. (in Russian).
  • Novikova E.S., Severina I.Y., Isavnina I.L., Zhukovskaya M.I. Down-regulation of the ultraviolet-sensitive visual pigment of the cockroach decreases the masking effect in short-wavelength illumination. Neurosci. Behav. Physiol. 2021. V. 51 (7). P. 1002–1007. https://doi.org/10.1007/s11055-021-01158-3
  • Novikova E.S., Zhukovskaya M.I. Bright light induced freezing behavior in American cockroach, Periplaneta americana. Sensornye sistemy [Sensory systems]. 2017. V. 31 (1). P. 44–50 (in Russian).
  • Shchenikova A.V., Selitskaya O.G. Sistema laboratornogo testirovanija povedencheskih reakcij kukuruznogo motyl’ka [Behavioral test system for corn borer]. Nauchnoe obespechenie razvitija APK v uslovijah importozameshhenija. Sbornik nauchnyh trudov po materialam mezhdunarodnoj nauchno-prakticheskoj konferencii “Razvitie agropromyshlennogo kompleksa na osnove sovremennyh nauchnyh dostizhenij i cifrovyh tehnologij” [Scientific support for the development of the agro-industrial complex in the context of import substitution. Collection of scientific papers based on the materials of the international scientific and practical conference “Development of the agro-industrial complex based on modern scientific achievements and digital technologies”]. Saint-Petersburg – Pushkin. 2019. V. 1. P. 108–112 (in Russian).
  • Abbas M., Ramzan M., Hussain N., Ghaffar A., Hussain K., Abbas S., Raza A. Role of light traps in attracting, killing and biodiversity studies of insect pests in Thal. Pakistan Journal of Agricultural Research. 2019. V. 32 (4). P. 684–690. https://doi.org/10.17582/journal.pjar/2019/32.4.684.690
  • Avarguès-Weber A., Mota T., Giurfa M. New vistas on honey bee vision. Apidologie. 2012. V. 43. P. 244–268. https://doi.org/10.1007/s13592-012-0124-2
  • Baker T.C., Linn C.E. Wind tunnels in pheromone research. In: H. E. Hummel, T.A. Miller (eds.). Techniques in Pheromone Research. New York, Springer. 1984. P. 75–110. https://doi.org/10.1007/978-1-4612-5220-7_3
  • Briscoe A.D., Chittka L. The evolution of color vision in insects. Annu. Rev. Entomol. 2001. V. 46. P. 471–510. https://doi.org/10.1146/annurev.ento.46.1.471
  • Buschbeck E.K., Friedrich M. Evolution of insect eyes: tales of ancient heritage, deconstruction, reconstruction, remodeling, and recycling. Evolution: Education and Outreach. 2008. V. 1. P. 448–462. https://doi.org/10.1007/s12052-008-0086-z
  • Collett M., Chittka L., and Collett T.S. Spatial memory in insect navigation. Curr. Biol. 2013. V. 23 (17). P. R789–R800. https://doi.org/10.1016/j.cub.2013.07.020
  • Deng J.Y., Wei H.Y., Huang Y.P., Du J.W. Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J. Chem. Ecol. 2004. V. 30 (10). P. 2037–2045. https://doi.org/10.1023/B:JOEC.0000045593.62422.73
  • Evangelista D.A., Russell G., Russell K.N., Bourne G., Ware J.L. Evidence that dispersal barriers influence blaberoid cockroach assemblages in a neotropical savanna–forest matrix. Insect. Conserv. Divers. 2017. V. 10 (5). P. 425–438. https://doi.org/10.1111/icad.12246
  • Frolov A., Shchenikova A., Selitskaya O., Grushevaya I., Zhukovskaya M., Fedoseev N., Kuzmin A., Lastushkina E., Kurenshchikov D., Kurenshchikov V., Tóth M. Asian corn borer (Ostrinia furnacalis Gn., Lepidoptera: Crambidae): attraction to a bisexual lure and comparison of performance with synthetic sex pheromone. Acta Phytopathol. Entomol. Hung. 2022. V. 57 (2). P. 148–164. https://doi.org/10.1556/038.2022.00159
  • Goldsmith T.H., Ruck P.R. The spectral sensitivities of the dorsal ocelli of cockroaches and honeybees: an electrophysiological study. J. Gen. Physiol. 1958. V. 41 (6). P. 1171. https://doi.org/10.1085/jgp.41.6.1171
  • Greiner B. Adaptations for nocturnal vision in insect apposition eyes. International Review of Cytology. 2006. V. 250. P. 1–46. https://doi.org/10.1016/S0074-7696(06)50001-4
  • Hatano E., Wada-Katsumata A., Schal C. Environmental decomposition of olefinic cuticular hydrocarbons of Periplaneta americana generates a volatile pheromone that guides social behaviour. Proc. Royal Soc. B. 2020. V. 287 (1921). P. 20192466. https://doi.org/10.1098/rspb.2019.2466.
  • Heimonen K., Salmela I., Kontiokari P., Weckström M. Large functional variability in cockroach photoreceptors: optimization to low light levels. J Neurosci. 2006. V. 26. P. 13454–13462. https://doi.org/10.1523/JNEUROSCI.3767-06.2006
  • Helfrich-Förster C. Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. J. Comp. Physiol. A. 2020. V. 206 (2). P. 259–272. https://doi.org/10.1007/s00359-019-01379-5
  • Hinze A., Lantz J., Hill S.R., Ignell R. Mosquito host seeking in 3D using a versatile climate-controlled wind tunnel system. Front. Behav. Neurosci. 2021. V. 15. P. 643693. https://doi.org/10.3389/fnbeh.2021.643693
  • Kainoh Y. Wind tunnel: a tool to test the flight response to semiochemicals. In: J.C. Lerner, U. Boldes (eds.). Wind Tunnels and Experimental Fluid Dynamics Research. 2011. P. 89–99.
  • Kalueff A.V., Stewart A.M., Song C., Berridge K.C., Graybiel A.M., Fentress J.C. Neurobiology of rodent selfgrooming and its value for translational neuroscience. Nat. Rev. Neurosci. 2016. V. 17. P. 45–59. https://doi.org/10.1038/nrn.2015.8
  • Kelber A., Osorio D. From spectral information to animal colour vision: experiments and concepts. Proc. Royal Soc. B. 2010. V. 277 (1688). P. 1617–1625. https://doi.org/10.1098/rspb.2009.2118
  • Kelly K.M., Mote M.I. Electrophysiology and anatomy of medulla interneurons in the optic lobe of the cockroach, Periplaneta americana. J. Comp. Physiol. A. 1990a. V. 167. P. 745–756. https://doi.org/10.1007/bf00189765
  • Kelly K.M., Mote M.I. Avoidance of monochromatic light by the cockroach Periplaneta americana. J. Insect Physiol. 1990b. V. 36 (4). P. 287–291. https://doi.org/10.1016/0022-1910(90)90113-T
  • Knudsen G.K., Tasin M., Aak A., Thöming G. A wind tunnel for odor mediated insect behavioural assays. J. Vis. Exp. 2018. V. 30 (141). P. e58385. https://doi.org/10.3791/58385
  • Ludwig W. Seitenstetigkeit niederer Tiere im Ein- und Zweilichtversuche. I. Limantria dispar-Raupen. Zeitschrift für wissenschaftliche Zoologie. 1933, Bd 144 (4). S. 469–495.
  • Menzel R. Spectral sensitivity and color vision in invertebrates. Comparative physiology and evolution of vision in invertebrates. Berlin, Heidelberg, Springer, 1979. P. 503–580.
  • Menzi U. Visual adaptation in nocturnal and diurnal ants. J. Comp. Physiol. A. 1987. V. 160. P. 11–21. https://doi.org/10.1007/BF00613437
  • Miller J.R., Roelofs W.L. Sustained-flight tunnel for measuring insect responses to wind-borne sex pheromones. J. Chem. Ecol. 1978. V. 4 (2). P. 187–198. https://doi.org/10.1007/BF00988054
  • Mizunami M. Neural organization of ocellar pathways in the cockroach brain. Journal of Comparative Neurology. 1995. V. 352 (3). P. 458–468. https://doi.org/10.1002/cne.903520310
  • Mote M.I., Goldsmith T.H. Spectral sensitivities of color receptors in the compound eye of the cockroach Periplaneta. Journal of Experimental Zoology. 1970. V. 173 (2). P. 137–145. https://doi.org/10.1002/jez.1401730203
  • Mrosovsky N. Masking: history, definitions, and measurement. Chronobiol. Int. 1999. V. 16 (4). P. 415–429. https://doi.org/10.3109/07420529908998717
  • Nowinszky L. The orientation of insects by light–major theories. In: L. Nowinszky (ed.). The handbook of light trapping. Szombathely, Savaria University Press. 2003. P. 15–18.
  • Okada J., Toh Y. Shade response in the escape behavior of the cockroach, Periplaneta americana. Zool. Sci. 1998. V. 15 (6). P. 831–835. https://doi.org/10.2108/zsj.15.831
  • Page T.L. Transplantation of the cockroach circadian pacemaker. Science. 1982. V. 216 (4541). P. 73–75. https://doi.org/10.1126/science.216.4541.73
  • Page T.L., Koelling E. Circadian rhythm in olfactory response in the antennae controlled by the optic lobe in the cockroach. J. Insect Physiol. 2003. V. 49 (7). P. 697–707. https://doi.org/10.1016/S0022-1910(03)00071-4
  • Roelofs W.L., Cardé R.T. Responses of Lepidoptera to synthetic sex pheromone chemicals and their analogues. Annu. Rev. Entomol. 1977. V. 22 (1). P. 377–405. https://doi.org/10.1146/annurev.en.22.010177.002113
  • Song B.M., Lee C.H. Toward a mechanistic understanding of color vision in insects. Fron. Neural Circuits. 2018. V. 12. P. 16. https://doi.org/10.3389/fncir.2018.00016
  • Subhash S., Shashank P.R. Wind Tunnel: A tool to test the flight response of insects to semiochemicals. In: A. Kumar Chakravarthy, V. Selvanarayanan (eds.). Experimental Techniques in Host-Plant Resistance. Singapore, Springer. 2019. P. 65–69.
  • Tinbergen N. The study of instinct. Oxford, Clarendon Press. 1951.
  • Van Der Kooi C.J., Stavenga D.G., Arikawa K., Belušič G., Kelber A. Evolution of insect color vision: from spectral sensitivity to visual ecology. Annu. Rev. Entomol. 2021. V. 66. P. 435–461. https://doi.org/10.1146/annurev-ento-061720-071644
  • Warrant E.J. Vision in the dimmest habitats on earth. J. Comp. Physiol. A. 2004. V. 190. P. 765–789. https://doi.org/10.1007/s00359-004-0546-z
  • Warrant E. Nocturnal Vision. In: R. H. Masland, T. Albright (eds.). The senses. San Diego, Elsevier. 2008. P. 54–82.
  • Warrant E.J., Kelber A., Gisleґn A., Greiner B., Ribi W., Wcislo W.T. Nocturnal vision and landmark orientation in a tropical halictid bee. Curr. Biol. 2004. V. 14. P. 1309–1318. https://doi.org/10.1016/j.cub.2004.07.057
  • Warrant E., Somanathan H. Colour vision in nocturnal insects. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2022. V. 377 (1862). P. 20210285. https://doi.org/10.1098/rstb.2021.0285
  • Wolda H. Diversity, diversity indices and tropical cockroaches. Oecologia. 1983. 58. P. 290–298. https://doi.org/10.1007/BF00385226
  • Zhukovskaya M., Yanagawa A., Forschler B. Grooming behavior as a mechanism of insect disease defense. Insects. 2013. V. 4 (4). P. 609–630. https://doi.org/10.3390/insects4040609
  • Zhukovskaya M., Novikova E., Saari P., Frolov R.V. Behavioral responses to visual overstimulation in the cockroach Periplaneta americana L. J. Comp. Physiol. A. 2017. V. 203 (12). P. 1007–1015. https://doi.org/10.1007/s00359-017-1210-8