• 1990 (Том 4)
  • 1989 (Том 3)
  • 1988 (Том 2)
  • 1987 (Том 1)

ЭКСПЕРИМЕНТАЛЬНЫЕ ПОДХОДЫ К ИЗУЧЕНИЮ ЛОКАЛИЗАЦИИ ИСТОЧНИКОВ ЗВУКА ПО РАССТОЯНИЮ

© 2023 г. И. Г. Андреева1, В. М. Ситдиков1, Е. А. Огородникова2

1Федеральное государственное бюджетное учреждение науки Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН 194223 Санкт-Петербург, пр. Тореза, д. 44, Россия
ig-andreeva@mail.ru
2Федеральное государственное бюджетное учреждение науки Институт физиологии им. И.П. Павлова РАН 199034 Санкт-Петербург, наб. Макарова, д. 6, Россия

Поступила в редакцию 03.04.2022 г.

В работе представлен обзор современных методов, которых применяют для исследования способности локализации источников звука по расстоянию. Рассмотрены монауральные и бинауральные признаки локализации. Подробно обсуждается роль бинаурального слуха в оценке расстояния до источника звука. Показано участие признаков локализации в абсолютной и относительной оценке расстояния. Рассмотрены преимущества и ограничения разных экспериментальных подходов к созданию виртуальных звуковых образов. В особом разделе обсуждаются подходы к формированию движущихся звуковых образов. Даны сводные материалы по результатам оценки слуховой разрешающей способности по расстоянию, полученные разными методами для неподвижных и движущихся источников звука. В обзор включены результаты собственных исследований авторов и описание перспективных экспериментальных и прикладных подходов к развитию данного направления.

Ключевые слова: пространственный слух, бинауральный слух, локализация по расстоянию, акустическая виртуальная реальность, разрешающая способность слуха, восприятие движения

DOI: 10.31857/S0235009223030022  EDN: WTAATY

Цитирование для раздела "Список литературы": Андреева И. Г., Ситдиков В. М., Огородникова Е. А. Экспериментальные подходы к изучению локализации источников звука по расстоянию. Сенсорные системы. 2023. Т. 37. № 3. С. 183–204. doi: 10.31857/S0235009223030022
Цитирование для раздела "References": Andreeva I. G., Sitdikov V. M., Ogorodnikova E. A. Eksperimentalnye podkhody k izucheniyu lokalizatsii istochnikov zvuka po rasstoyaniyu [Experimental methods to study the sound source localization by distance in humans]. Sensornye sistemy [Sensory systems]. 2023. V. 37(3). P. 183–204 (in Russian). doi: 10.31857/S0235009223030022

Список литературы:

  • Альтман Я.А. Пространственный слух. СПб.: Институт физиологии им. И.П. Павлова РАН. 2011. 311 с.
  • Андреева И.Г. Виртуальная акустическая реальность: психоакустические исследования. Сенсорные системы. 2004а. Т. 18. № 3. С. 251–264.
  • Андреева И.Г. Пороговая длительность сигналов при восприятии человеком радиального движения звуковых образов различного спектрального состава. Сенсорные системы. 2004б. Т. 18. № 3. С. 233–238.
  • Андреева И.Г., Альтман Я.А. О восприятии человеком скорости приближения и удаления звукового образа, движущегося под разными азимутальными углами. Сенсорные системы. 2001. Т. 15. № 4. С. 295–300.
  • Андреева И.Г., Гвоздева А.П. Пороги непрерывного приближения звуковых источников с ритмическими структурами, характерными для биологически значимых звуковых сигналов. ЖЭБФ. 2015. Т. 51. № 1. С. 29–36.
  • Андреева И.Г., Бахтина А.В., Гвоздева А.П. Разрешающая способность слуха человека по расстоянию при приближении и удалении источников звука разного спектрального состава. Сенсорные системы. 2014. Т. 28. № 4. С. 3–12.
  • Андреева И.Г., Гвоздева А.П., Огородникова Е.А. Пороговая длительность звуковых сигналов для оценки приближения и удаления их источника при моделировании снижения высокочастотного слуха. Сенсорные системы. 2018. Т. 32. № 4. С. 277–284. https://doi.org/10.1134/S0235009218040029
  • Андреева И.Г., Ситдиков В.М., Гвоздева А.П., Огородникова Е.А., Голованова Л.Е., Клишова Е.А. Способ скрининговой оценки способности человека к различению положения источников звука по расстоянию. Патент РФ. № 2754342. 2021.
  • Блауэрт Й. Пространственный слух. М.: Энергия. 1979. 224 с.
  • Вартанян И.А., Черниговская Т.В. Влияние различных параметров акустической стимуляции на оценку человеком изменения расстояния от источника звука. Физиол. журн. СССР. 1980. Т. 66. № 1. С. 101–108.
  • Вартанян И.А., Андреева И.Г., Мазинг А.Ю., Маркович А.М. Оценка восприятия человеком скорости и ускорения приближения и удаления источника звука. Физиология человека. 1999. Т. 25. № 5. С. 38–47.
  • Висков О.В. О восприятии движения слитного слухового образа. Физиология человека. 1975. Т. 1. № 2. С. 371–376.
  • Гвоздева А.П., Андреева И.Г. Разрешающая способность слуха человека по расстоянию при локализации приближающихся и удаляющихся непрерывных и прерывистых звуковых образов. Сенсорные системы. 2016. Т. 30. № 2. С. 114–153.
  • Гвоздева А.П., Андреева И.Г. Метод оценки временных показателей пространственного слуха при сенсоневральной тугоухости 2–3 степени. Мат. XXXII Сессии Российского Акустического Общества. М., 2019. С. 113.
  • Кожевникова Е.В. Некоторые характеристики восприятия человеком приближающегося звукового образа. Физиол. журн. СССР. 1980. Т. 66. № 1. С. 109–112.
  • Кожевникова Е.В. Оценка человеком скорости приближения источника звука. Физиология человека. 1985. Т. 11. № 3. С. 368–373.
  • Кожевникова Е.В. Восприятие приближения и удаления звука шагов. Условия возникновения перцептивного эффекта движения. Сенсорные системы. 1989. Т. 3. № 1. С. 93–100.
  • Огородникова Е.А., Пак С.П. Различение человеком скорости движения при фронтальном приближении источника звука. Физиология человека. 1998. Т. 24. № 2. С. 51–55.
  • Пак С.П., Огородникова Е.А. Формирование акустических стимулов, моделирующих движение источника звука при его приближении и удалении. Сенсорные системы. 1997. Т. 11. № 3. С. 346–351.
  • Aggius-Vella E., Gori M., Campus C., Moore B.C.J., Pardhan S., Kolarik A.J., Van der Stoep N. Auditory distance perception in front and rear space. Hearing Research. 2022. V. 417. P. 108468. https://doi.org/10.1016/j.heares.2022
  • Ahveninen J., Kopčo N., Jääskeläinen I.P. Psychophysics and neuronal bases of sound localization in humans. Hearing research. 2014. V. 307. P. 86–97. https://doi.org/10.1016/j.heares.2013.07.008
  • Akeroyd M.A., Gatehouse S., Blaschke J. The detection of differences in the cues to distance by elderly hearingimpaired listeners. J. Acoust. Soc. Am. 2007. V. 121. № 2. P. 1077–1089. https://doi.org/10.1121/1.2404927
  • Altman J.A., Andreeva I.G. Monaural perception and binaural perception of approaching and withdrawing auditory images in humans. Int. J. Audiol. 2004. V. 43. № 4. P. 227–235. https://doi.org/10.1080/14992020400050031
  • Andreeva I.G. Spatial Selectivity of Hearing in Speech Recognition in Speech-shaped Noise Environment. Hum Physiol. 2018. V. 44. № 2. P. 226–236. https://doi.org/10.1134/S0362119718020020
  • Andreeva I.G., Dymnikowa M., Gvozdeva A.P., Ogorodnikova E.A., Pak S.P. Spatial separation benefit for speech detection in multi-talker babble-noise with different egocentric distances. Acta Acustica united with Acustica. 2019. V. 105. № 3. P. 484–491. https://doi.org/10.3813/AAA.919330
  • Andreeva I.G., Klishova E.A., Gvozdeva A.P., Sitdikov V.M., Golovanova L.E., Ogorodnikova E.A. Comparative assessment of spatial and temporal resolutions in the localization of an approaching and receding broadband noise source in healthy subjects and patients with first-degree symmetric sensorineural hearing loss. Human Physiology. 2020. V. 46. № 5. P. 465–472. https://doi.org/10.1134/S0362119720040039
  • Armstrong C., Thresh L., Murphy D., Kearney G.A. Perceptual evaluation of individual and non-individual HRTFs: A case study of the SADIE II database. Appl. Sci. 2018. V. 8. P. 2029. https://doi.org/10.3390/app8112029
  • Ashmead D.H., Leroy D., Odom R.D. Perception of the relative distances of nearby sound sources. Perception & Psychophysics. 1990. V. 47. P. 326–331. https://doi.org/10.3758/BF03210871
  • Begault D.R. Preferred sound intensity increase for sensation of half distance. Perceptual and motor skills. 1991. V. 72. № 3. P. 1019–1029. https://doi.org/10.2466/pms.1991.72.3.1019
  • Begault D.R., Wenzel E.M., Anderson M.R. Direct Comparison of the Impact of Head Tracking, Reverberation, and Individualized Head-Related Transfer Functions on the Spatial Perception of a Virtual Speech Source. J. Audio Eng. Soc. 2001. V. 49. P. 904–916.
  • Bertelson P., Radeau M. Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Percept. Psychophys. 1981. V. 29. P. 578–584. https://doi.org/10.3758/bf03207374
  • Best V., Baumgartner R., Lavandier M., Majdak P., Kopčo N. Sound Externalization: A Review of Recent Research. Trends in Hearing. 2020. V. 24. https://doi.org/10.1177/2331216520948390
  • Blauert J. Spatial Hearing: The Psychophysics of Human Sound Localization. Cambridge. MIT Press, 1997. 494 p.
  • Bronkhorst A.W. The cocktail-party problem revisited: Early processing and selection of multi-talker speech. Attention, Perception, & Psychophysics. 2015. V. 77. № 5. P. 1465–1487. https://doi.org/10.3758/s13414-015-0882-9
  • Brungart D.S., Rabinowitz W.M., Durlach N.I. Auditory localization of a nearby point source. J Acoust Soc Am. 1996. V. 100. P. 2593. https://doi.org/10.1121/1.417577
  • Brungart D.S. Rabinowitz W.M. Auditory localization of nearby sources. Head-related transfer functions. J. Acoust. Soc. Am. 1999. V. 106. P. 1465–1479. https://doi.org/10.1121/1.427180
  • Butler R.A., Levy E.T., Neff W.D. Apparent distance of sounds recorded in echoic and anechoic chambers. Journal of Experimental Psychology: Human Perception and Performance. 1980. V. 6. № 4. P. 745. https://doi.org/10.1037/0096-1523.6.4.745
  • Calamia P.T., Hixson E.L. Measurement of the head-related transfer function at close range. J. Acoust. Soc. Am. 1997. V. 102. P. 3117. https://doi.org/10.1121/1.420569
  • Carlile S., Leung J. The perception of auditory motion. Trends in hearing. 2016. V. 20. P. 2331216516644254. https://doi.org/10.1177/2331216516644254
  • Catic J., Santurette S., Buchholz J.M., Gran F., Dau T. The effect of interaural-level-difference fluctuations on the externalization of sound. The Journal of the Acoustical Society of America. 2013. V. 134. № 2. P. 1232–1241. https://doi.org/10.1121/1.4812264
  • Chabot-Leclerc A., MacDonald E.N., Dau T. Predicting binaural speech intelligibility using the signal-to-noise ratio in the envelope power spectrum domain. The Journal of the Acoustical Society of America. 2016. V. 140. № 1. P. 192–205.
  • Cochran P., Throop J., Simpson W.E. Estimation of distance of a source of sound. The American journal of psychology. 1968. V. 81. № 2. P. 198–206. https://doi.org/10.2307/1421264
  • Coleman P.D. Failure to localize the source distance of an unfamiliar sound. J. Acoust. Soc. Am. 1962. V. 34. P. 345–346.
  • Coleman P.D. An analysis of cues to auditory depth perception in free space. Psychological Bulletin. 1963. V. 60. № 3. P. 302–315. https://doi.org/10.1037/h0045716
  • Coudert A., Verdelet G., Reilly K.T., Truy E., Gaveau V. Intensive Training of Spatial Hearing Promotes Auditory Abilities of Bilateral Cochlear Implant Adults: A Pilot Study. Ear and Hearing. 2022. https://doi.org/10.1097/AUD.0000000000001256
  • Duda R.O., Martens W.L. Range dependence of the response of a spherical head model. J. Acoust. Soc. Am. 1998. V. 104. № 5. P. 3048–3058. https://doi.org/10.1121/1.423886
  • Edwards A.S. Accuracy of auditory depth perception. Journal of General Psychology. 1955. V. 52. P. 327–329. https://doi.org/10.1080/00221309.1955.9920247
  • Fontana F., Rocchesso D. Auditory distance perception in an acoustic pipe. ACM Transactions on Applied Perception. 2008. V. 5. № 3. P. 1–15. https://doi.org/10.1145/1402236.1402240
  • Gardner M.B. Distance Estimation of 0° or Apparent 0° – Oriented Speech Signals in Anechoic Space. J. Acoust. Soc. Am. 1969. V. 45. № 1. P. 47–53. https://doi.org/10.1121/1.1911372
  • Gordon M.S., Russo F.A., MacDonald E. Spectral information for detection of acoustic time to arrival. Attention Perception & Psychophysics. 2013. V. 75. № 4. P. 738–750. https://doi.org/10.3758/s13414-013-0424-2
  • Grantham D.W. Detection and discrimination of simulated motion of auditory targets in the horizontal plane. The Journal of the Acoustical Society of America. 1986. V. 79. № 6. P. 1939–1949. https://doi.org/10.1121/1.393201
  • Guo Z., Lu Y., Wang L., Yu G. Discrimination experiment of sound distance perception for a real source in nearfield. EAA Spatial Audio Signal Processing Symposium. 2019. P. 85–89. https://doi.org/10.25836/sasp.2019.25
  • Gvozdeva A.P., Andreeva I.G. The Minimum Audible Movement Distance for Localization of Approaching and Receding Broadband Noise with a Reduced Fraction of High-Frequency Spectral Components Typical of Prebyscusis. Journal of Evolutionary Biochemistry and Physiology. 2019. V. 55. № 6. P. 463–474. https://doi.org/10.1134/S0022093019060048
  • Hall D.A., Moore D.R. Auditory neuroscience: The salience of looming sounds. Current Biology, 2003. V. 13. № 3. P. R91–R93. https://doi.org/10.1016/s0960-9822(03)00034-4
  • Hartley R.V.L., Fry T.C. The Binaural Location of Pure Tones. Physical Review. 1921. V. 18. № 6. P. 431. https://doi.org/10.1103/PhysRev.18.431
  • Hartmann W.M., Wittenberg A. On the externalization of sound images. J. Acoust. Soc. Am. 1996. V. 99. № 6. P. 3678–3688. https://doi.org/10.1121/1.414965
  • Haustein B.G. Hypothesen über die einohrige Entfernungswahrnehmung des menschlichen Gehörs (Hypotheses about the perception of distance in human hearing with one ear). Hochfrequenztech. u. Elektroakustik. 1969. V. 78. P. 46–57.
  • Hirsch R.H. Perception of the range of a sound source of unknown strength. J. Acoust. Soc. Am. 1968. V. 43. P. 373–374. https://doi.org/10.1121/1.1910789
  • Holt R.E., Thurlow W.R. Subject orientation and judgment of distance of a sound source. Acoust. Soc. Am. 1969. V. 46. № 6B. P. 1584–1585. https://doi.org/10.1121/1.1911909
  • Jenny C., Reuter C. Usability of individualized head-related transfer functions in virtual reality: Empirical study with perceptual attributes in sagittal plane sound localization. JMIR Serious Games. 2020. V. 8. P. e17576. https://doi.org/10.2196/17576
  • Kearney G., Gorzel M., Rice H., Boland F. Distance perception in interactive virtual acoustic environments using first and higher order ambisonic sound fields. Acta Acustica united with Acustica. 2012. V. 98. P. 61–71. https://doi.org/10.3813/AAA.918492
  • Kim H-Y., Suzuki Y., Takane S., Sone T. Control of auditory distance perception based on the auditory parallax model. Applied Acoustics. 2001. V. 62. Is. 3. P. 245–270. https://doi.org/10.1016/S0003-682X(00)00023-2
  • Kolarik A.J., Moore B.C.J., Zahorik P., Cirstea S., Pardhan S. Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Atten. Percept. Psychophys. 2016. V. 78. № 2. P. 373–395. https://doi.org/10.3758/s13414-015-1015-1
  • Kolarik A.J., Raman R., Moore B.C.J., Cirstea S., Gopalakrishnan S., Pardhan S. The accuracy of auditory spatial judgments in the visually impaired is dependent on sound source distance. Scientific Reports. 2020. V. 10. P. 7169. https://doi.org/10.1038/s41598-020-64306-8
  • Kopčo N., Shinn-Cunningham B.G. Spatial unmasking of nearby pure-tone targets in a simulated anechoic environment. The Journal of the Acoustical Society of America. 2003. V. 114. № 5. P. 2856–2870. https://doi.org/10.1121/1.1616577
  • Kopčo N., Shinn-Cunningham B.G. Effect of stimulus spectrum on distance perception for nearby sourcesa). Acoust. Soc. Am. 2011. V. 130. № 3. P. 1530–1541 https://doi.org/10.1121/1.3613705
  • Koroleva I.V., Ogorodnikova E.A. Chapter 30: Modern achievements in cochlear and brainstem auditory implantation. In: Neural Networks and Neurotechnologies (eds: Yu. Shelepin, E. Ogorodnikova, N. Solovyev, E. Yakimova). SPb, Publish by VVM, 2019. P. 231–249.
  • Lambert R.M. Dynamic theory of sound-source localization. J. Acoust. Soc. Am. 1974. V. 56. P. 165–171. https://doi.org/10.1121/1.1903248
  • Liu Y., Xie B.S. Auditory discrimination on the distance dependence of near-field head-related transfer function magnitudes. Proc. Mtgs. Acoust. 2013. V. 19. P. 050048. https://doi.org/10.1121/1.4799196
  • Lounsbury B.F., Butler R.A. Estimation of distances of recorded sounds presented through headphones. Scandinavian audiology. 1979. V. 8. № 3. P. 145–149. https://doi.org/10.3109/01050397909076315
  • Lundbeck M., Grimm G., Hohmann V., Laugesen S., Neher T. Sensitivity to angular and radial source movements as a function of acoustic complexity in normal and impaired hearing. Trends in hearing. 2017. V. 21. P. 2331216517717152. https://doi.org/10.1177/2331216517717152
  • Marrone N., Mason C.R., Kidd Jr.G. The effects of hearing loss and age on the benefit of spatial separation between multiple talkers in reverberant rooms. The Journal of the Acoustical Society of America. 2008. V. 124. № 5. P. 3064–3075. https://doi.org/10.1121/1.2980441
  • McAnally K.I., Martin R.L. Sound localization with head movement: Implications for 3-d audio displays. Front. Neurosci. 2014. V. 8. P. 1–6. https://doi.org/10.3389/fnins.2014.00210
  • Mershon D.H., Bowers J.N. Absolute and relative cues for the auditory perception of egocentric distance. Perception. 1979. V. 8. № 3. P. 311–322. https://doi.org/10.1068/p080311
  • Mershon D.H., King L.E. Intensity and reverberation as factors in the auditory perception of egocentric distance. Perception & Psychophysics. 1975. V. 18. № 6. P. 409–415. https://doi.org/10.3758/BF03204113
  • Mershon D.H., Ballenger W.L., Little A.D., McMurtry P.L., Buchanan J.L. Effects of room reflectance and background noise on perceived auditory distance. Perception. 1989. V. 18. № 3. P. 403–416. https://doi.org/10.1068/p180403
  • Middlebrooks J.C. Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. J. Acoust. Soc. Am. 1999. V. 106. P. 1493–1510 https://doi.org/10.1121/1.427147
  • Middlebrooks J.C. Sound localization. Handbook of clinical neurology. 2015. V. 129. P. 99–116. https://doi.org/10.1016/B978-0-444-62630-1.00006-8
  • Middlebrooks J.C., Green D.M. Sound localization by human listeners. Annual review of psychology. 1991. V. 42. № 1. P. 135–159. https://doi.org/10.1146/annurev.ps.42.020191.001031
  • Molino J. Perceiving the Range of a Sound Source When the Direction is Known. J. Acoust. Soc. Am. 1973. V. 53. P. 1301–1304. https://doi.org/10.1121/1.1913469
  • Møller H., Sørensen M.F., Hammershøi D., Jensen C.B. Head-Related Transfer Functions of Human Subjects. J. Audio Eng. Soc. 1995. V. 43. P. 300–321.
  • Moore B.C.J. An Introduction to the Psychology of Hearing. Leiden. Brill. 2012. 442 p.
  • Moore D.R., King A.J. Auditory perception: The near and far of sound localization. Current Biology. 1999. V. 9. № 10. P. R361–R363. https://doi.org/10.1016/S0960-9822(99)80227-9
  • Naguib M., Wiley R.H. Estimating the distance to a source of sound: mechanisms and adaptations for long-range communication. Animal behavior. 2001. V. 62. № 5. P. 825–837. https://doi.org/10.1006/anbe.2001.1860
  • Neuhoff J.G. Perceptual bias for rising tones. Nature. 1998. V. 395. № 6698. P. 123–124. https://doi.org/10.1038/25862
  • Oberem J., Richter J.G., Setzer D., Seibold J., Koch I., Fels. J. Experiments on localization accuracy with nonindividual and individual HRTFs comparing static and dynamic reproduction methods. bioRxiv. 2020. P. 1–11. https://doi.org/10.1101/2020.03.31.011650
  • Otani M., Hirahara T., Ise S. Numerical study on sourcedistance dependency of head-related transfer functions. The Journal of the Acoustical Society of America. 2009. . 125. № 5. P. 3253–3261. https://doi.org/10.1121/1.3111860
  • Parseihian G., Jouffrais C., Katz B.F. Reaching nearby sources: Comparison between real and virtual sound and visual targets. Frontiers in Neuroscience. 2014. V. 8. P. 269. https://doi.org/10.3389/fnins.2014.00269
  • Pelzer R., Dinakaran M., Brinkmann F., Lepa, S., Grosche P., Weinzierl S. Head-related transfer function recommendation based on perceptual similarities and anthropometric features. J. Acoust. Soc. Am. 2020. V. 148. P. 3809–3817 https://doi.org/10.1121/10.0002884
  • Perrott D.R., Ambarsoom H., Tucker J. Changes in head position as a measure of auditory localization performance: Auditory psychomotor coordination under monaural and binaural listening conditions. J. Acoust. Soc. Am. 1987. V. 82. № 5. P. 1637. https://doi.org/10.1121/1.395155
  • Perrott D.R., Costantino B., Cisneros J. Auditory and visual localization performance in a sequential discrimination task. The Journal of the Acoustical Society of America. 1993. V. 93. № 4. P. 2134–2138. https://doi.org/10.1121/1.406675
  • Petersen J. Estimation of loudness and apparent distance of pure tones in a free field. Acta Acustica united with Acustica. 1990. V. 70. № 1. P. 61–65.
  • Risoud M., Hanson J.N., Gauvrit F., Renard C., Lemesre P.E., Bonne N.X., Vincent C. Sound source localization. European annals of otorhinolaryngology, head and neck diseases. 2018. V. 135. № 4. P. 259–264. https://doi.org/10.1016/j.anorl.2018.04.009
  • Rosenblum L.D., Carello C., Pastore R.E. Relative effectiveness of three stimulus variables for locating a moving sound source. Perception. 1987. V. 16. № 2. P. 175–186. https://doi.org/10.1068/p160175
  • Rummukainen O.S., Robotham T., Habets E.A. Head-Related Transfer Functions for Dynamic Listeners in Virtual Reality. Applied Sciences. 2021. V. 11. № 14. P. 6646. https://doi.org/10.3390/app11146646
  • Russell M.K. Age and Auditory Spatial Perception in Humans: Review of Behavioral Findings and Suggestions for Future Research. Front. Psychol. 2022. V. 13. P. 831670. https://doi.org/10.3389/fpsyg.2022.831670
  • Saberi K., Perrott D.R. Lateralization thresholds obtained under conditions in which the precedence effect is assumed to operate. Journal of the Acoustical Society of America. 1990. V. 87. P. 1732–1737. https://doi.org/10.1121/1.399422
  • Seifritz E., Neuhoff J.G., Bilecen D., Scheffler K., Mustovic H. Neural processing of auditory looming in the human brain. Current Biology. 2002. V. 12. P. 2147–2151. https://doi.org/10.1016/S0960-9822(02)01356-8
  • Shinn-Cunningham B.G., Santarelli S., Kopco N. Tori of confusion: Binaural localization cues for sources within reach of a listener. The Journal of the Acoustical Society of America. 2000. V. 107. № 3. P. 1627–1636. https://doi.org/10.1121/1.428447
  • Shinn-Cunningham B.G., Streeter T., Gyss J.F. Perceptual plasticity in spatial auditory displays. ACM Transactions on Applied Perception (TAP). 2005. V. 2. № 4. P. 418–425. https://doi.org/10.1145/1101530.1101536
  • Simpson W.E., Stanton L.D. Head movement does not facilitate perception of the distance of a source of sound. The American journal of psychology. 1973. V. 86. № 1. P. 151–159. https://doi.org/10.2307/1421856
  • Stevens S.S., Guirao M. Loudness, reciprocality, and partition scales. Acoust. Soc. Am. 1962. V. 34. № 9B. P. 1466–1471. https://doi.org/10.1121/1.1918370
  • Strybel T.Z., Perrott D.R. Discrimination of relative distance in the auditory modality: The success and failure of the loudness discrimination hypothesis. J. Acoust. Soc. Am. 1984. V. 76. № 1. P. 318–320. https://doi.org/10.1121/1.391064
  • Strybel T.Z., Manligas C.L., Perrott D.R. Auditory apparent motion under binaural and monaural listening conditions. Perception & Psychophysics. 1989. V. 45. № 4. P. 371–377. https://doi.org/10.3758/BF03204951
  • Strybel T.Z., Manligas C.L., Chan O., Perrott D.R. A comparison of the effects of spatial separation on apparent motion in the auditory and visual modalities. Perception & Psychophysics. 1990. V. 47. № 5. P. 439–448. https://doi.org/10.3758/BF03208177
  • Strybel T.Z., Manllgas C.L., Perrott D.R. Minimum audible movement angle as a function of the azimuth and elevation of the source. Human factors. 1992. V. 34. № 3. P. 267–275. https://doi.org/10.1177/001872089203400302
  • Vartanyan I.A., Andreeva I.G. A psychophysiological study of auditory illusions of approach and withdrawal in the context of the perceptual environment. The Spanish journal of psychology. 2007. V. 10. № 2. P. 266–276. https://doi.org/10.1017/S1138741600006533
  • von Békésy G. The moon illusion and similar auditory phenomena. The American journal of psychology. 1949. V. 62. № 4. P. 540–552. https://doi.org/10.2307/1418558
  • Warren R.M. Auditory perception: A new analysis and synthesis. Cambridge, UK. Cambridge University Press, 1999. 241 p.
  • Wenzel E.M., Arruda M., Kistler D.J., Wightman F.L. Localization using nonindividualized head-related transfer functions. J Acoust Soc Am. 1993. V. 94. P. 111–23. https://doi.org/10.1121/1.407089
  • Westermann A., Buchholz J.M. Release from masking through spatial separation in distance in hearing impaired listeners. In: Proceedings of Meetings on Acoustics ICA2013. Acoustical Society of America. 2013. V. 19. № 1. P. 050156. https://doi.org/10.1121/1.4906581
  • Wightman E.R., Firestone F.A. Binaural localization of pure tones. The Journal of the Acoustical Society of America. 1930. V. 2. № 2. P. 271–280. https://doi.org/10.1121/1.1915255
  • Yu G., Wang L. Effect of Individualized Head-Related Transfer Functions on Distance Perception in Virtual Reproduction for a Nearby Sound Source. Archives of Acoustics. 2019. V. 44. № 2. P. 251–258. https://doi.org/10.24425/aoa.2019.128488
  • Zahorik P. Assessing auditory distance perception using virtual acoustics. J. Acoust. Soc. Am. 2002. V. 111. P. 1832–1846. https://doi.org/10.1121/1.1458027
  • Zahorik P., Wightman F.L. Loudness constancy with varying sound source distance. Nature Neuroscience. 2001. V. 4. P. 78–83. https://doi.org/10.1038/82931
  • Zahorik P., Brungart D.S., Bronkhorst A.W. Auditory distance perception in humans: A summary of past and present research. Acta Acustica united with Acustica. 2005. V. 91. № 3. P. 409–420.
  • Zhang M., Qiao Y., Wu X., Qu T. Distance-dependent Modeling of Head-related Transfer Functions. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019. P. 276–280. https://doi.org/10.1109/ICASSP.2019.8683756
  • Zhong X.L., Xie B.S. Head-related transfer functions and virtual auditory display. In: Soundscape Semiotics-Localization and Categorization. 2014. https://doi.org/10.5772/56907