• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Frequency selectivity of hearing

© 2015 D. I. Nechaev, E. V. Sysueva

Institute of Ecology and Evolution of the RAS 119071 Moscow, Leninsky Pr., 33

Received 29 Apr 2015

TA review of the frequency selectivity of the human hearing system. The review includes data of many psychoacoustic experiments and models, built on their base. Models were described both with classical methods of masking and using nonmasking methods and complex signals.

Key words: hearing, psychoacoustic, frequency tuning

Cite: Nechaev D. I., Sysueva E. V. Chastotnaya izbiratelnost slukha [Frequency selectivity of hearing]. Sensornye sistemy [Sensory systems]. 2015. V. 29(3). P. 181-200 (in Russian).

References:

  • Попов В.В., Супин А.Я. Количественное измерение частотной разрешающей способности слуха человека // Докл. акад. наук. 1984. Т. 278. С. 1012–1016.
  • Супин А.Я., Попов В.В., Милехина О.Н., Тараканов М.Б. Чувствительность слуха к контрасту спектрального рисунка звука // Докл. акад. наук. 1999. Т. 365. С. 571–573.
  • Супин А.Я., Попов В.В., Милехина О.Н., Тараканов М.Б. Влияние интенсивности звука на частотную разрешающую способность слуха и эффект помех // Доклады РАН. 2002. Т. 383. No 2. С. 134– 137.
  • Супин А.Я. Острота (частотная разрешающая способность слуха) человека // Сенсорные системы. 2003. Т. 17. No 4. С. 288–306.
  • Супин А.Я., Попов В.В. Частотная разрешающая способность слуха: некоторые фундаментальные представления как основа практических решений // Физиология человека. 1987. Т. 13. С. 28–34.
  • Темчин А.Н., Ресио-Спинозо А., Кай Х., Ружжеро М.А. Бегущие волны в органе корти улитки шиншиллы // Сенсорные системы. 2012. Т. 26. No 4. С. 304–325.
  • Anderson E.S., Nelson D.A., Kreft H., Nelson P.B., OxenhamA.J. Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users // J. Acoust. Soc. Am. 2011. V. 130. P. 364–375.
  • Aronoff J.M., Landsberger D.M. The development of a modified spectral ripple test // J. Acoust. Soc. Am. 2013. V. 134. P. 217–222.
  • Bekesy G. Experiments In Hearing. New York: McgrawHill, 1960.
  • Berenstain C.K., Mens L.H., Mulder J.J.S., Vanpoucke F.J. Current steering and current focusing in cochlear implants: Comparison of monopolar, tripolar, and virtual channel electrode configuration // Ear. Hear. 2008. V. 29. P. 250–260.
  • Cai Y., Geisler D. Suppression in auditory-nerve fibers of cats using low-side suppressors. III. Model results // Hearing Research. 1996. V. 96. P. 126–140.
  • Cooper N.P., Rhode W.S. Nonlinear mechanics at the apex or the guineapig cochlea // Hear: Res. 1995. V. 82. P. 225–243.
  • Dai H., Nguyen Q.T., Green D.M. A two-filter model for frequency discrimination // Hearing Research. 1995. V. 85. P. 109–114.
  • Dallos P., Zheng J., Cheatham M.A. Preastin and cohlear amplifier // J. Physiology. 2006. V. 576. P. 37–42.
  • Dau T., Kollmeier B., Kohlrausch A. Modeling auditory processing of amplitude modulation. I. Detection and masking with narrowband carriers // J. Acoust. Soc. Am.1997. V. 102. P. 2892–2905.
  • Drennan W.R., Won J.H., Nie K., Jameyson E., Rubinstein J.T. Sensitivity of psychophysical measures to signal processor modification in cochlear implant users // Hear. Res. 2010. V. 262. P. 1–8.
  • Emmerich D.S., Ellermeier W., Butensky B. A re-examination of the frequency discrimination of random-amplitude tones, and a test of Henning’s modified energy-detector model // J. Acoust. Soc. Am. 1989. V. 85. P. 1653–1659.
  • Evans E.F. Auditory processing of complex sounds: an overview // Phil. Trans. R. Soc. Lond. 1992. V. B 336. P. 295–306.
  • Fastl H., Zwicker E. Psychoacoustics Facts and Models. New York: Springer, 2007.
  • FletcherH. Auditory patterns // Reviews of Modern Physic, 1940. V. 12. P. 47–65.
  • Geisler C.D., Nuttall A.L. Two-tone suppression of basilar membrane vibrations in the base of guinea pig cochlea using low-side suppressors // J. Acoust. Soc. Am. 1997. V. 102. P. 430–440.
  • Glasberg B.R., Moore B.C.J. Derivation of auditory filter shapes from notched-noise data // Hear. Res. 1990. V. 47. P. 103–138.
  • Glasberg B.R., Moore B.C.J. Frequency selectivity as a function of level and frequency measured with uniformly exciting notched noise // J. Acoust. Soc. Am. 2000. V. 108. P. 2318–2328.
  • Green D. Profile Analysis: A different view of auditory intensity discrimination // Am. Psychol. 1983. V. 38. P. 133–142.
  • Green D.M. On number of components in profile-analysis tasks // J. Acoust. Soc. Amer. 1992. V. 91. P. 1616 – 1623.
  • Green D.M., Onsan Z.A., Forrest T.G. Frequency effects in profile analysis // J. Acoust. Soc. Amer. 1987. V. 81. P. 692–699.
  • Henning G.B. Frequency discrimination of random amplitude tones // J. Acoust. Soc. Am. 1966. V. 39. P. 336– 339.
  • Henry B.A., Turner C.W. Spectral peak resolution and speech recognition in quiet: Normal hearing, hearing impaired, and cochlear implant listeners // J. Acoust. Soc. Am. 2005. V. 118. P. 1111–1121.
  • Henry B.A., Turner C.W. The resolution of complex spectral patterns by cochlear implant and normal – hearing listeners // J. Acoust. Soc. Am. 2003. V. 113. P. 2861–2873.
  • Houtgast T. Auditory-filter characteristics derived from direct-masking and pulsation-threshold data with a rippled-noise masker // J. Acoust. Soc. Am. 1977. V. 62. P. 409–415.
  • Irino T., Patterson R.D. A time-domain, level-dependent auditory filter: the gammachirp // J. Acoust. Soc. Am. 1997. V. 101. P. 412–419.
  • Kiang N.Y.S., Watanabe T., Thomas E.C., Clark L.F. Discharge Patterns of Single Fibers in the Cats Auditory Nerve. Cambridge. MA: MIT Press, 1965.
  • Krumbholtz K., Patterson R.D., Nobble A. Asymmetry of masking between noise and iterated rippled noise: Evidence for time-interval processing in the auditory system // J. Acoust. Soc. Am. 2001. V. 110. P. 2096– 2107.
  • Lopez-Poveda E.A., Meddis R. A human nonlinear cochlear filter bank // J. Acoust. Soc. Am. 2001. V. 110. P. 3107–3118.
  • Martin P., Mehta A.D., Hudspeth A.J. Negative hairbundle stiffness betrays a mechanism for mechanical amplification by the hair cell // Proc. Nat. Acad. Science USA. 2000. V. 97. P. 12026–12031.
  • McKay C., Azadpour M., Akhoun I. In search of frequency resolution // Conference on Implantable Auditory Prostheses. July 2009. Lake Tahoe, CA.
  • Micheyl C., Xiao L., Oxenham A.J. Characterizing the dependence of pure-tone frequency difference limens on frequency, duration, and level // Hearing Research. 2012. V. 292. P. 1–13.
  • Moore B.C.J. An introduction to the psychology of hearing. Leiden, Boston. Brill, 2013.
  • Moore B.C.J. Frequency difference limens for short-duration tones // J. Acoust. Soc. Am. 1973. V. 54. P. 610– 619.
  • Moore B.C.J. Psychophysical tuning curves measured in simultaneous and forward masking // J. Acoust. Soc. Am. 1978. V. 63. P. 524–532.
  • Moore B.C.J., Alcantara J.I., Dau T. Masking patterns for sinusoidal and narrowband noise maskers // J. Acoust. Soc. Am. 1998. V. 104. P. 1023–1038.
  • Moore B.C.J., Ernst S.M.A. Frequency difference limens at high frequencies: Evidence for a transition from a temporal to a place code // J. Acoust. Soc. Am. 2012. V. 132. P. 1542–1547.
  • Moore B.C.J., Glasberg B.R Mechanisms underlying the frequency discrimination of pulsed tones and the detection of frequency modulation // J. Acoust. Soc. Am. 1989. V. 86. P. 1722–1732.
  • Moore B.C.J., Glasberg B.R, The danger of using narrowband noise maskers to measure suppression // J. Acoust. Soc. Am. 1985. V. 77. P. 2137–2141.
  • Moore B.C.J., Glasberg B.R. Suggested formulae for calculating auditory filter band widths and excitation patterns // J. Acoust. Soc. Am. 1983. V. 74. P. 750– 753.
  • Neff D.L. Stimulus parameters governing confusion effects in forward masking // J. Acoust. Soc. Am. 1985. V. 78. P. 1966–1976.
  • Nelson D.A., Sianton M.E., Freyman R.L. A general equation describing frequency d3.iscrimination as a function of frequency and sensation level // J. Acoust. Soc. Am. 1983. V. 73. P. 2117–2123.
  • Oxenham A.J., Plack C.J. Suppression and the upward spread of masking // J. Acoust. Soc. Am. 1998. V. 101. P. 1921–1934.
  • Oxenham A.J., Shera C.A. Estimates of human cochlear tuning at low levels using forward and simultaneous masking // J. Assoc. Res. Otolaryngol. 2003. V. 4. P. 541–554.
  • Patterson R.D. Auditory filter shapes derived with noise stimuli // J. Acoust. Soc. Am. 1976. V. 59. P. 640–654.
  • Patterson R.D., Allerhand M.H., Giguere C. Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform // J. Acoust. Soc. Am. 1995. V. 98. P. 1890–1894.
  • Patterson R.D., Moore B.C. Auditory filters and excitation patterns as representations of frequency resolution // Frequency selectivity in hearing / Ed. Moore B.C.J. London: Acad Press., 1986. P. 123–177.
  • Patterson R.D., Nimmo-Smith I. Off-frequency listening and auditory filter asymmetry // J. Acoust. Soc. Am. 1980. V. 67. P. 229–245.
  • Patterson R.D., Nimmo-Smith I., Weber D.L., Milory R. The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram, and speech threshold // J. Acoust. Soc. Am. 1982. V. 72. P. 1788– 1803.
  • Pick G. Level dependence of psychophysical frequency resolution and auditory filter shape // J. Acoust. Soc. Am. 1980. V. 68. P. 1085–1095.
  • Rhode W.S., Greenberg S. Lateral suppression and inhibition in the cochlear nucleus of the cat // J. Neurophysiol. 1994. V. 71. P. 493–514.
  • Rhode W.S. Observations or the vibration or the basilar membrane in squirrel monkeys using the M6ssbauer technique // J. Acoust. Soc. Am. 1971. V. 49. P. 1218– 1231.
  • Rhode W.S., Recio A. Study of mechanical motions in the basal region of the chinchilla cochlea // J. Acoust. Soc. Am. 2000. V.107. P. 3317–3332.
  • Robles L., Ruggero M.A. Mechanics of the mammalian cochlea // Physiol. Rev. 2001. V. 81. P. 1305–1352.
  • Rose J.E., Brugge J.F., Anderson D.J., Hind J.E. Patterns of activity in single auditory nerve fibers of the squirrel monkey // Hearing Mechanisms in Vertebrates / Eds. A.V. Sd, Reuck, J. Knight. London: Churchill, 1968.
  • Ruggero M.A., Rich N.C., Recio A., Narayan S.S., Robles L. Basilar-membrane responses to tones at the base of the chinchilla cochlea // J. Acoust. Soc. Am. 1997. V. 101. P. 2151–2163.
  • Ruggero M.A., Robles L., Rich N.C. Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression // J. Neuraphysiol. 1992. V. 68. P. 1087–1099.
  • Sachs M.B., Kiang N.Y.S. Two-tone inhibition in auditory nerve fibers // J. Acoust. Soc. Am. 1968. V. 43. P. 1120– 1128.
  • Scharf B. Critical bands // Foundations of Modem Auditory Theory / Ed. J.V. Tobias. New York: Academic Press, 1970.
  • Sek A., Moore B.C. Frequency discrimination as a function of frequency, measured in several ways // J. Acoust. Soc. Amer. 1995. V. 87. P. 2479–2486.
  • Shamman S.A., Kowalski N., Versnel H. Ripple analysis in the ferret primary auditory cortex. Topographic distribution of ripple response parameters // J. Auditory Neurosci. 1995. V. 1. P. 271–278.
  • Supin A.Ya., Popov V.V., Milekhina O.N., Tarakanov M.B. Frequency-temporal resolution of hearing measured by rippled noise // Hearing Res. 1997. V. 108. P. 17–27.
  • Supin A.Ya., Popov V.V., Milekhina O.N., Tarakanov M.B. Ripple density resolution for various rippled-noise patterns // J. Acoust. Soc. Am. 1998. V. 103. P. 2042– 2050.
  • Supin A.Ya., Popov V.V., Milekhina O.N., Tarakanov M.B. Frequency resolving power measured by rippled noise // Hearing Res. 1994. V. 78. P. 31–40.
  • Unoki M., Irino T., Glasberg B.R., Moore B.C.J., Patterson R.D. Comparison of the roex and gamrnachirp filters as representations of the auditory filter // J. Acoust. Soc. Am. 2006. V. 120. P. 1474–1492.
  • Vogten L.L.M. Pure-tone masking: A new result from a new method // Facts and models in hearing / Eds Zwicker E., Terhardt E. Berlin: Springer-Verlag, 1974. P. 142–155.
  • Wier C.C., Jesteadt W., Green D.M. Frequency discrimination as a function of frequency and sensation level // J. Acoust. Soc. Am. 1977. V. 61. P. 178–184.
  • Won J.H., Drennan W.R., Rubinatein J.T. Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users // J. Assoc. Res. Otolaryngol. 2007. V. 8. P. 384–392.
  • Won J.H., Humphrey E.L., Yeager K.R., Martinez A.A., Robinson C.H., Mills K.E., Johnstone P.M. Relationship among the physiologic channel interactions, spectral-ripple discrimination, and vowel identification in cochlear implant users // J. Acoust. Soc. Am. 2014. V. 136. P. 2714–2725.
  • Yasin I., Plack C.J. The effects of high-frequency suppressor on tuning corves and derived basilar-membrane response functions // J. Acoust. Soc. Am. 2003. V. 114. P. 322–332.
  • Yost W.A. Pitch of iterated rippled noise // J. Acoust. Soc. Amer. 1996. V. 100. P. 511–518.
  • Yost W.A. The dominance region and ripple-noise pitch: A test of the peripheral weighting model // J. Acoust. Soc. Am. 1982. V. 72. P. 416–425.
  • Zhang X., Heinz M.G., Bruce I.C., Carneyl H. A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. // J. Acoust. Soc. Am. 2001. V. 109. P. 648– 670.
  • Zinn C., Maier H., Zenner H.H., Gummer A.W. Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in Vivo Guinea-Pig Cochlea // Hear. Res. 2000. V. 142. P. 159–183.
  • Zwicker E. Masking and psuchological exitation as consequences of the ear`s frequency analysis // Frequency Analysis and periodicity detection in hearing / Eds. Plomp R., Smoorenburg G.F., Sijthoff, leiden. 1970. P. 376–396.
  • Zwicker E. Subdivision of the audible frequency range into critical bands (Frequenz gruppen) // J. Acoust. Soc. Am. 1961. V. 33. P. 248.