It is known that the characteristics of spontaneous and evoked neuronal activity undergo changes over time. Typically,
these changes are studied in acute and subacute experimental settings (e.g., pharmacological anesthesia, sleep-wake
cycles). Long-term (weeks to months) recording of activity from identified neurons presents considerable methodological
challenges. Consequently, questions regarding whether such changes occur, their nature, and their impact on the
functional properties of neurons and neuronal populations require further investigation. To our knowledge, such studies
at the level of olfactory bulb (OB) neurons–particularly in relation to the perception of ultra-low-concentration
odorants–have not been conducted to date. The aim of this work was to perform a longitudinal study of the
characteristics of spontaneous and evoked activity (triggered by presentation of sulcatone vapor at ultra-low
concentration, ~1 × 10–15 g/cm³) in identified mitral/bundle (M/B) neurons of the OB. To achieve this, M/B neuron
activity in the OB was periodically recorded (no more than once weekly) under xylazine-tiletamine-zolazepam anesthesia
in 5 rats over at least 1 month (maximum: 121 days). Analysis showed that the characteristics of both spontaneous and
odorant-evoked activity in M/B neurons remain stable over extended periods. This finding is significant for research
aimed at developing biohybrid sensory system technologies for identifying target substances at ultra-low concentrations.
Key words:
olfactory bulb, mitral and bundle neurons, odorant-induced activity, longitudinal studies
DOI: 10.7868/S3034593625040071
Cite:
Kosenko P. O., Kiroi V. N., Drokin A. A., Vasilev D. S., Voynov V. B., Gazeev V. A., Miroshnichenko M. K.
Longityudnoe issledovanie spontannoi i vyzvannoi aktivnosti mitralnykh/puchkovykh neironov obonyatelnoi lukovitsy krys
[Longitudinal study of spontaneous and evoked activity of mitral/taft neurons in the olfactory bulb of rats].
Sensornye sistemy [Sensory systems].
2025.
V. 39(4).
P. 80–99 (in Russian). doi: 10.7868/S3034593625040071
References:
- Vasil’eva L.N., Roshchin V.I., Bondar’ I.V., Badakva A.M., Miller N.V., Zobova L.N. Dlitel’naya registratsiya odinochnykh neironov i kriterii ee otsenki [Long-term registration of single neurons and criteria for its evaluation]. Zhurnal vysshei nervnoi deyatel’nosti im. IP Pavlova [I.P. Pavlov Journal of Higher Nervous Activity]. 2014. V. 64(6). P. 693–693. (in Russ.) https://doi.org/10.7868/S004446771406015X
- Kogan A.B., Pavlovskaya N.I. O perestroikakh aktivnosti neironov zritel’noi kory krolika pri desinkhronizatsii ehlektrokortikogrammy [On rearrangements of the activity of neurons of the rabbit visual cortex during desynchronization of the electrocorticogram]. Fiziologicheskii zhurnal SSSR imeni IM Sechenova [Sechenov Physiological Journal of the USSR]. 1969. V. 55(12). P. 1429–1435 (in Russ.).
- Adrian E.D. Olfactory reactions in the brain of the hedgehog // The Journal of physiology. 1942. V. 100(4). P. 459. https://doi.org/10.1113/jphysiol.1942.sp003955
- Barth B.B., Huang H.I., Hammer G.E., Shen X. Opportunities and challenges for single-unit recordings from enteric neurons in awake animals // Micromachines (Basel). 2018. V. 9(9). P. 428. https://doi.org/10.3390/mi9090428
- Bathellier B., Buhl D.L., Accolla R., Carleton A. Dynamic ensemble odor coding in the mammalian olfactory bulb: sensory information at different timescales // Neuron. 2008. V. 57(4). P. 586–598. https://doi.org/10.1016/j. neuron.2008.02.011
- Bathellier B., Lagier S., Faure P., Lledo P.M. Circuit properties generating gamma oscillations in a network model of the olfactory bulb // J Neurophysiol. 2006. V. 95(4). P. 2678–2691. https://doi.org/10.1152/jn.01141.2005. Erratum in: J Neurophysiol. 2006. V. 95(6). P. 3961–3962.
- Belluzzi O., Benedusi M., Ackman J., LoTurco J.J. Electrophysiological differentiation of new neurons in the olfactory bulb // J Neurosci. 2003. V. 23(32). P. 10411–10418. https://doi.org/10.1523/JNEUROSCI.23-32-10411.2003
- Bondar I.V., Leopold D.A., Richmond B.J., Victor J.D., Logothetis N.K. Long-term stability of visual pattern selective responses of monkey temporal lobe neurons // PloS one. 2009. V. 4(12). P. e8222. https://doi.org/10.1371/journal.pone.0008222
- Buonviso N., Amat C., Litaudon P., Roux S., Royet J.P., Farget V., Sicard G. Rhythm sequence through the olfactory bulb layers during the time window of a respiratory cycle // Eur J Neurosci. 2003. V. 17(9). P. 1811–1819. https://doi.org/10.1046/j.1460-9568.2003.02619.x
- Carlson D., Carin L. Continuing progress of spike sorting in the era of big data // Current Opinion in Neurobiology. 2019. V. 55. P. 90–96. https://doi.org/10.1016/j.conb.2019.02.007
- Corcelli A., Lobasso S., Lopalco P., Dibattista M., Araneda R., Peterlin Z., Firestein S. Detection of explosives by olfactory sensory neurons // Journal of hazardous materials. 2010. V. 175(1–3). P. 1096–1100. https://doi.org/10.1016/j.jhazmat.2009.10.054
- Chaput M.A., Buonviso N., Berthommier F. Temporal patterns in spontaneous and odour-evoked mitral cell discharges recorded in anaesthetized freely breathing animals // Eur J Neurosci. 1992. V. 4(9). P. 813–822. https://doi.org/10.1111/j.1460-9568.1992.tb00191.x
- Davies D.L., Bouldin D.W. A Cluster Separation Measure // IEEE Transactions on Pattern Analysis and Machine Intelligence. 1979. V. 1(2). P. 224–227. https://doi.org/10.1109/TPAMI.1979.4766909
- Dickey A.S., Suminski A., Amit Y., Hatsopoulos N.G. Single-unit stability using chronically implanted multielectrode arrays // J. Neurophysiol. 2009. V. 102(2). P. 1331–1339. https://doi.org/10.1152/jn.90920.2008
- Dong Q., Du L., Zhuang L., Li R., Liu Q., Wang P. A novel bioelectronic nose based on brain-machine interface using implanted electrode recording in vivo in olfactory bulb // Biosensors and Bioelectronics. 2013. V. 49. P. 263–269. https://doi.org/10.1016/j.bios.2013.05.035
- Dragonieri S., Annema J.T., Schot R., van der Schee M. P., Spanevello A., Carratú P., Resta O., Rabe K.F., Sterk P.J. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD // Lung cancer. 2009. V. 64(2). P. 166–170. https://doi.org/10.1016/j.lungcan.2008.08.008
- Dung T.T., Oh Y., Choi S.J., Kim I.D., Oh M.K., Kim M. Applications and advances in bioelectronic noses for odour sensing // Sensors (Basel). 2018. V. 18(1). P. 103. https://doi.org/10.3390/s18010103
- Fletcher M.L., Wilson D.A. Olfactory bulb mitral-tufted cell plasticity: odorant-specific tuning reflects previous odorant exposure // Journal of Neuroscience. 2003. V. 23(17). P. 6946–6955. https://doi.org/10.3390/s18010103
- Fraser G.W., Schwartz A.B. Recording from the same neurons chronically in motor cortex // Journal of neurophysiology. 2012. V. 107(7). P. 1970–1978. https://doi.org/10.1152/jn.01012.2010
- Friend D.M., Kemere C., Kravitz A.V. Quantifying recording quality in in vivo striatal recordings // Current protocols in neuroscience. 2015. V. 70(1). P. 6–28. https://doi.org/10.1002/0471142301.ns0628s70
- Gao K., Li S., Zhuang L., Qin Z., Zhang B., Huang L., Wang P. In vivo bioelectronic nose using transgenic mice for specific odor detection // Biosensors and Bioelectronics. 2018. V. 102. P. 150–156. https://doi.org/10.1016/j.bios.2017.08.055
- Granados-Fuentes D., Saxena M.T., Prolo L.M., Aton S.J., Herzog E.D. Olfactory bulb neurons express functional, entrainable circadian rhythms // Journal of Neuroscience. 2004. V. 19(4). P. 898–906. https://doi.org/10.1111/j.0953-816x.2004.03117.x
- Hubel D.H., Wiesel T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex // The Journal of physiology. 1962. V. 160(1). P. 106. https://doi.org/10.1113/jphysiol.1962.sp006837
- Isaacson J.S. Glutamate spillover mediates excitatory transmission in the rat olfactory bulb // Neuron. 1999. V. 23(2). P. 377–384. https://doi.org/10.1016/s0896-6273(00)80787-4
- Jackson A., Fetz E.E. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates // Journal of neurophysiology. 2007. V. 98(5). P. 3109–3118. https://doi.org/10.1152/jn.00569.2007
- Johnson B.A., Leon M. Chemotopic odorant coding in a mammalian olfactory system // Journal of Comparative Neurology. 2007. V. 503(1). P. 1–34. https://doi.org/10.1002/cne.21396
- Kiroy V.N., Kosenko P.O., Smolikov A.B., Saevskiy A.I., Aslanyan E.V., Shaposhnikov P.D., Rebrov Yu.A., Arsenyev F.V. Changes in spontaneous and odorant-induced single-unit activity of mitral/tufted neurons of the rat olfactory bulb during xylazine-tiletamine-zolazepam anesthesia // IBRO Neuroscience Reports. 2022. V. 13. P. 207–214. https://doi.org/10.1016/j.ibneur.2022.09.002
- Kiroy V.N., Kosenko P.O., Shepelev I.E., Shcherban I.V., Smolikov A.B., Arsenyev F.V., Zaborovsky A.V., Aksenov V.A., Tivileva M.I., Gruznov V.M., Zasypkina, I.I. Biohybrid Technology for the Detection of Ultralow Concentrations of Trinitrotoluene in Air // Journal of Analytical Chemistry. 2023. V. 78(8). P. 1079–1086. https://doi.org/10.1134/S1061934823080099
- Kononova, E., Mežmale, L., Poļaka, I., Veliks, V., Anarkulova, L., Vilkoite, I., Tolmanis I., Ļeščinska A.M., Stonāns I., Pčolkins A., Mochalski P., Leja, M. Breath fingerprint of colorectal cancer patients based on the gas chromatography–mass spectrometry analysis // International Journal of Molecular Sciences. 2024. V. 25(3). P. 1632. https://doi.org/10.3390/ijms25031632
- Kopeliovich M.V., Petrushan M.V., Matukhno A.E., Lysenko L.V. Towards detection of cancer biomarkers in human exhaled air by transfer-learning-powered analysis of odor-evoked calcium activity in rat olfactory bulb // Heliyon. 2023. V. 10(1). P. e20173. https://doi.org/10.1016/j.heliyon.2023.e20173
- Kosaka K., Kosaka T. Synaptic organization of the glomerulus in the main olfactory bulb: compartments of the glomerulus and heterogeneity of the periglomerular cells // Anatomical science international. 2005. V. 80(2). P. 80–90. https://doi.org/10.1111/j.1447-073x.2005.00092.x
- Kosenko P.O., Smolikov A.B., Voynov V.B., Shaposhnikov P.D., Saevskiy A.I., Kiroy V.N. Effect of xylazine-tiletaminezolazepam on the local field potential of the rat olfactory bulb // Comparative medicine. 2020. V. 70(6). P. 492–498. https://doi.org/10.30802/AALAS-CM-20-990015
- Kumar S., Huang J., Abbassi–Ghadi N., Mackenzie H.A., Veselkov K.A., Hoare J.M., Lovat L.B., Laurence B., Španěl P., Smith D., Hanna, G.B. Mass spectrometric analysis of exhaled breath for the identification of volatile organic compound biomarkers in esophageal and gastric adenocarcinoma // Annals Surgery. 2015. V. 262(6). P. 981–990. https://doi.org/10.1097/SLA.0000000000001101
- Lewicki M.S. A review of methods for spike sorting: the detection and classification of neural action potentials // Network: Computation in Neural Systems. 1998. V. 9(4). P. 53–78. https://doi.org/10.1088/0954-898X/9/4/001
- Li J., Haddad R., Chen S., Santos V., Luetje C.W. A broadly tuned mouse odorant receptor that detects nitrotoluenes // Journal of neurochemistry. 2012. V. 121(6). P. 881–890. https://doi.org/10.1111/j.1471-4159.2012.07740.x
- Liu Q., Ye W., Xiao L., Du L., Hu N., Wang P. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose // Biosensors and Bioelectronics. 2010. V. 25(10). P. 2212–2217. https://doi.org/10.1016/j.bios.2010.02.024
- Luo T.Z., Bondy A.G., Gupta D., Elliott V.A., Kopec C.D., Brody C.D. An approach for long-term, multi-probe Neuropixels recordings in unrestrained rats // Elife. 2020. V. 9. P. e59716. https://doi.org/10.7554/eLife.59716
- Mankin E.A., Sparks F.T., Slayyeh B., Sutherland R.J., Leutgeb S., Leutgeb J.K. Neuronal code for extended time in the hippocampus. Proceedings of the National Academy of Sciences. 2012. V. 109(47). P. 19462–19467. https://doi.org/10.1073/pnas.1214107109
- Meisami E., Sendera T.J. Morphometry of rat olfactory bulbs stained for cytochrome oxidase reveals that the entire population of glomeruli forms early in the neonatal period. Brain Res Dev Brain Res. 1993. V. 71(2). P. 253–257. https://doi.org/10.1016/0165-3806(93)90177-c
- McMahon D.B., Bondar I.V., Afuwape O.A., Ide D.C., Leopold D.A. One month in the life of a neuron: longitudinal single-unit electrophysiology in the monkey visual system. Journal of neurophysiology. 2014. V. 112(7). P. 1748–1762. https://doi.org/10.1152/jn.00052.2014
- Mochalski P., Leja M., Gasenko E., Skapars R., Santare D., Sivins A., Aronsson D.E., Ager C., Jaeschke C., Shani G., Mitrovics J., Mayhew C., Haick H. Ex vivo emission of volatile organic compounds from gastric cancer and noncancerous tissue // Journal of Breath Research. 2018. V. 12(4). P. 046005. https://doi.org/10.1088/1752-7163/aacbfb
- Mombaerts P., Wang F., Dulac C., Chao S. K., Nemes A., Mendelsohn M., Edmondson J., Axel R. Visualizing an olfactory sensory map // Cell. 1996. V. 87(4). P. 675–686. https://doi.org/10.1016/s0092-8674(00)81387-2
- Nagayama S., Takahashi Y.K., Yoshihara Y., Mori K. Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb // Journal of neurophysiology. 2004. V. 91(6). P. 2532–2540. https://doi.org/10.1152/jn.01266.2003
- Nica R., Matter S.F., Griff E.R. Physiological evidence for two classes of mitral cells in the rat olfactory bulb // Brain Research. 2010. V. 1358. P. 81–88. https://doi.org/10.1016/j.brainres.2010.08.026
- Oweiss K., Aghagolzadeh M. Detection and Classification of Extracellular Action Potential Recordings // Statistical Signal Processing for Neuroscience and Neurotechnology. 2010. P. 15–74. https://doi.org/10.1016/B978-0-12-375027-3.00002-8
- Rawson N. E., Eberwine J., Dotson R., Jackson J., Ulrich P., Restrepo D. Expression of mRNAs encoding for two different olfactory receptors in a subset of olfactory receptor neurons // J Neurochem. 2000. V. 75(1). P. 185–195. https://doi.org/10.1046/j.1471-4159.2000.0750185.x
- Ressler K. J., Sullivan S. L., Buck L. B. A zonal organization of odorant receptor gene expression in the olfactory epithelium // Cell. 1993. V. 73(3). P. 597–609. https://doi.org/10.1016/0092-8674(93)90145-g
- Richardson A.G., Borghi T., Bizzi E. Activity of the same motor cortex neurons during repeated experience with perturbed movement dynamics // Journal of Neurophysiology. 2012. V. 107(11). P. 3144–3154. https://doi.org/10.1152/jn.00477.2011
- Rojas-Líbano D., Kay L.M. Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system // Cogn Neurodyn. 2008. V. 2(3). P. 179–194. https://doi.org/10.1007/s11571-008-9053-1
- Serizawa S., Miyamichi K., Sakano H. One neuron-one receptor rule in the mouse olfactory system // Trends Genet. 2004. V. 20(12). P. 648–-653. https://doi.org/10.1016/j.tig.2004.09.006
- Stakic J., Suchanek J.M., Ziegler G.P., Griff E.R. The source of spontaneous activity in the main olfactory bulb of the rat // PLoS ONE. 2011. V. 6(8). P. e23990. https://doi.org/10.1371/journal.pone.0023990
- Schoenfeld T.A., Knott T.K. Evidence for the disproportionate mapping of olfactory airspace onto the main olfactory bulb of the hamster // J Comp Neurol. 2004. V. 476(2). P. 186–201. https://doi.org/10.1002/cne.20218
- Shcherban I.V., Fedotova V.S., Matukhno A.E., Shepelev I.E., Shcherban O.G., Lysenko L.V. A method for detecting spatiotemporal patterns of cancer biomarkers-evoked activity using radial basis function network extracted time-domain features from calcium imaging data // J Neurosci Methods. 2024. V. 405. P. 110097. https://doi.org/10.1016/j.jneumeth.2024.110097
- Vucinić D., Cohen L.B., Kosmidis E.K. Interglomerular center-surround inhibition shapes odorant-evoked input to the mouse olfactory bulb in vivo // J Neurophysiol. 2006. V. 95(3). P. 1881–1887. https://doi.org/10.1152/jn.00918.2005
- Wachowiak M., McGann J.P., Heyward P.M., Shao Z., Puche A.C., Shipley M.T. Inhibition of olfactory receptor neuron input to olfactory bulb glomeruli mediated by suppression of presynaptic calcium influx // J Neurophysiol. 2005. V. 94(4). P. 2700–2712. https://doi.org/10.1152/jn.00286.2005
- Wachowiak M., Shipley M.T. Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb // Semin Cell Dev Biol. 2006. V. 17(4). P. 411–423. https://doi.org/10.1016/j. semcdb.2006.04.007
- Wood F., Black M.J. A nonparametric Bayesian alternative to spike sorting // Journal of neuroscience methods. 2008. V. 173(1). P. 1–12. https://doi.org/10.1016/j.jneumeth.2008.04.030
- Xu Z.Q., Broza Y.Y., Ionsecu R., Tisch U., Ding L., Liu H., Song Q., Pan Y.Y., Xiong F.X., Gu K.S., Sun G.P., Chen Z.D., Leja M., Haick H. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions // British journal of cancer. 2013. V. 108(4). P. 941–950. https://doi.org/10.1038/bjc.2013.44
- Yang M.J., Sim S., Jeon J.H., Jeong E., Kim H.C., Park Y.J., Kim I.B. Mitral and tufted cells are potential cellular targets of nitration in the olfactory bulb of aged mice // PloS One. 2013. V. 8(3). P. e59673. https://doi.org/10.1371/journal.pone.0059673
- Yang Y., Gao W. Wearable and flexible electronics for continuous molecular monitoring // Chemical Society Reviews. 2018. V. 48(6). P. 1465–1491. https://doi.org/10.1039/C7CS00730B
- Zhou J., Dong Q., Zhuang L.J., Li R., Wang P. Rapid odor perception in rat olfactory bulb by microelectrode array // J Zhejiang Univ Sci B. 2012. V. 13(12). P. 1015–1023. https://doi.org/10.1631/jzus.B1200073
- Zhu P., Du L., Tian Y., Chen Wu C., Wang P. An in-vivo bioelectronic nose using bioengineered olfactory system of rat as sensitive elements towards explosive detection. In 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). 2019. P. 1–3. https://doi.org/10.1109/ISOEN.2019.8823440