• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

KNOWLEDGE OF THE GENETIC CAUSES OF HEARING LOSS IS THE KEY TO ITS PREVENTION

© 2025 T. G. Markova, M. V. Markova

Saint Petersburg Research Institute of Ear, Throat, Nose and Speech of the Ministry of Health of the Russian Federation, 190013 Saint Petersburg, Bronnitskaya St., 9, Russian Federation
Federal State Budgetary Educational Institution of Additional Professional Education “Russian Medical Academy of Continuous Professional Education”; Department of Surdology, 125993, Moscow, Barrikadnaya St., 2/1, Russian Federation
State Budgetary Healthcare Institution “Scientific Research Clinical Institute of Otolaryngology named after L.I. Sverzhevsky” of the Moscow Department of Health; 117152, Moscow, Zagorodnoye Highway, 18a/building 2, Russian Federation

Received 01 Aug 2025

Sensory organs are ideally suited to detect environmental signals and have maximum sensitivity to various stimuli. Congenital hearing loss associated with dysfunction of hair cells, receptors that perceive sound, is the most common sensory deficit in humans, which in most cases is associated with genetic causes. The reason of the significant role of genetics lies in the complex structure of the auditory analyser, which contains various types of highly specialized cells and proteins that ensure the function of hair cells. Removal or replacement of even one nucleotide in the genes encoding these proteins can disrupt the function of the well-coordinated high-precision system of the inner ear. The purpose of this article is to acquaint readers with the molecular structure of the auditory analyser, the hereditary forms of hearing loss and the modern possibilities for diagnostics and prevention of hereditary hearing loss. The main problem of genetic causes is related to the fact that a child with congenital deafness is born from a pair of healthy parents whose pedigree is “not burdened”, but at the same time they are carriers of mutations in the genes responsible for hearing impairment. Such carriage can now be found out even before the birth of the child thanks to the use of next- generation sequencing (NGS) methods. Prevention of severe hereditary diseases is gradually being introduced into the practice of medical and genetic counselling of healthy couples when planning offspring, and the development of preimplantation diagnostics methods within the framework of in vitro fertilization (IVF) programs allows couples at risk of hereditary diseases to give birth to a healthy child.

Key words: congenital non-syndromic hearing loss, Corti’s organ, GJB2 gene, prevention of hereditary diseases, recessive diseases

DOI: 10.7868/S3034593625040019

Cite: Markova T. G., Markova M. V. Znanie o geneticheskikh prichinakh tugoukhosti – klyuch k profilaktike [Knowledge of the genetic causes of hearing loss is the key to its prevention]. Sensornye sistemy [Sensory systems]. 2025. V. 39(4). P. 5–20 (in Russian). doi: 10.7868/S3034593625040019

References:

  • Ginter E.K. Medicinskaya genetika: nacional'noe rukovodstvo. [Medical genetics: national guide]. Pod. red. E.K. Gintera, V.P. Puzyreva, S.I. Kuceva. Moscow: GEOTAR-Media, 2022. 986 p. (in Russ.).
  • Zhuravskij S.G., Lopotko A.I. GJB2 gen gluhoty: ot nauchnyh otkrytij k prakticheskomu prilozheniyu [GJB2 deafness gene: from scientific discoveries to practical application]. Rossijskaya otorinolar [Russian Otolaryngology]. 2006. № 3 (22). P. 8–16. (in Russ.).
  • Lalayanc M.R., Markova T.G., Bliznec E.A., Polyakov A.V., Tavartkiladze G.A. Rezul'taty audiologicheskogo obsledovaniya detej pervogo goda zhizni s sensonevral'noj tugouhost'yu, obuslovlennoj mutaciyami v gene GJB2 [Results of audiological examination of children of the first year of life with sensorineural hearing loss caused by mutations in the GJB2 gene]. Vestnik otorinolaringologii [Vestn Otorinolaringol]. 2011. No. 3. P. 31–35. (in Russ.).
  • Kutsev S.I. Neonatal'nyj skrining. Nacional'noe rukovodstvo [Neonatal screening. National guidelines]. Ed. by S.I. Kutsev. Moscow: GEOTAR-Media, 2024. 360 p. (in Russ.).
  • Markova T.G. Nasledstvennye narusheniya sluha [Hereditary hearing impairment]. Otorinolaringologiya: nacional'noe rukovodstvo [Otolaryngology: national guidelines]. Ed. by V.T. Palchun. Moscow. GEOTAR-Media, 2016. P. 723–732. (in Russ.).
  • Markova T.G. Nasledstvennye narusheniya sluha u detej [Hereditary hearing impairment in children]. V knige: Detskaya otorinolaringologiya: rukovodstvo dlya vrachej. [Pediatric otolaryngology: guidelines for physicians]. Ed. by M.R. Bogomilsky, V.R. Chistyakova. In two volumes. T. I. Moscow: OJSC “Izdatelstvo “Medicine”, 2005. 660 p. (in Russ.).
  • Markova T.G., Megrelishvili S.M., Zajceva N.G., Shagina I.A., Polyakov A.V. DNK-diagnostika pri vrozhdennoj i rannej detskoj tugouhosti/gluhote [DNA diagnostics in congenital and early childhood hearing loss/deafness]. Vestnik otorinolaringologii [Vestn Otorinolaringol]. 2002. № 6. P. 12–15. (in Russ.).
  • Newessbaum R.L., McInnes R.R., Willard H.F. Medicinskaya genetika: uchebnoe posobie [Medical genetics: a textbook]. Translated from English. Moscow: GEOTAR-Media, 2010. 624 p. (in Russ.).
  • Singer M., Berg P. Geny i genomy. [Genes and genomes]. In 2 volumes. Vol. 2. Translated from English. Moscow: Mir, 1998. 391 p. (in Russ.).
  • Tavartkiladze G.A. Klinicheskaya audiologiya. Nacional'noe rukovodstvo [Clinical audiology. National guidelines]. In 3 volumes. Vol. 1. Moscow: GEOTAR-Media, 2024. 329 p. (in Russ.).
  • Azaiez H., Booth K.T., Ephraim S.S., Crone B., Black-Ziegelbein E.A., Marini R.J., Shearer A.E., SloanHeggen C.M., Kolbe D., Casavant T., Schnieders M.J., Nishimura C., Braun T., Smith R.J.H. Genomic landscape and mutational signatures of deafness-associated genes // Am.J.Hum.Genet. 2018. V. 103. P. 484–497. https://doi.org/10.1016/j.ajhg.2018.08.006.
  • Bademci G., Foster J., Mahdieh N., Bonyadi M., Duman D., Cengiz F.B., Menendez I, Diaz-Horta O., Shirkavand A., Zeinali S., Subasioglu A., Tokgoz-Yilmaz S., Huesca-Hernandez F., de la Luz Arenas-Sordo M., DominguezAburto J., Hernandez-Zamora E., Montenegro P., Paredes R., Moreta G., Vinueza R., Villegas F., MendozaBenitez S., Guo S,, Bozan N., Tos T., Incesulu A., Sennaroglu G., Blanton S.H., Ozturkmen-Akay H., YildirimBaylan M., Tekin M. Comprehensive analysis via exome sequencing uncovers genetic etiology in autosomal recessive nonsyndromic deaf– ness in a large multiethnic cohort // Genet Med. 2016. V. 18(4). P. 364–371. https://doi.org/10.1038/gim.2015.89
  • Birman C.S., Brew J.A., Gibson W.P., Elliott E.J. CHARGE syndrome and Cochlear implantation: difficulties and outcomes in the pediatric population // Int J Pediatr Otorhinolaryngol. 2015. V. 79(4). P. 487–492. https://doi.org/10.1016/j.ijporl.2015.01.004
  • Birman C.S., Powell H.R., Gibson W.P., Elliott E.J. Cochlear implant outcomes in Cochlea nerve aplasia and hypoplasia // Otol Neurotol. 2016. V. 37(5). P. 438–445. https://doi.org/10.1097/MAO.0000000000000997
  • Bliznetz E.A., Lalayants M.R, Markova T.G., Balanovsky O.P., Balanovska E.V., Skhalyakho R.A., Pocheshkhova E.A., Nikitina N.V., Voronin S.V., Kudryashova E.K., Glotov O.S., Polyakov A.V. Update of the GJB2/DFNB1 mutation spectrum in Russia: a founder Ingush mutation del(GJB2-D13S175) is the most frequent among other large deletions // J Hum Genet. 2017. V. 62(8). P. 789–795. https://doi.org/10.1038/jhg.2017.42
  • Carlson R.J., Walsh T., Mandell J.B., Aburayyan A., Lee M.K., Gulsuner S., Horn D.L., Ou H.C., Sie K.C.Y., Mancl L., Rubinstein J., King M.C. Association of genetic diagnoses for childhood-onset hearing loss with Cochlear implant outcomes // JAMA Otolaryngol Head Neck Surg. 2023. V. 149(3). P. 212–222. https://doi.org/10.1001/jamaoto.2022.4463
  • Castiglione A., Melchionda S., Carella M., Trevisi P., Bovo R., Manara R., Martini A. EYA1-relatef disorders: two clinical cases and a literature review // Int. J. Pediatr. Otorhinolaryngol. 2014. V. 78(8). Р. 1201–1210. https://doi.org/10.1016/j.ijporl. 2014.03.032
  • Cheatham M.A., Goodyear R.J., Homma K., Legan P.K., Korchagina J., Naskar S., Siegel J.H., Dallos P., Zheng J., Richardson G.P. Loss of the tectorial membrane protein CEACAM16 enhances spontaneous, stimulus-frequency, and transiently evoked otoacoustic emissions // J Neurosci. 2014. V. 34(31). Р. 10325–10338. https://doi.org/10.1523/JNEUROSCI.1256-14.2014
  • Chen K., Liu M., Wu X., Zong L., Jiang H. Targeted next generation sequencing reveals OTOF mutations in auditory neuropathy spectrum disorder // Int.J. Pediatr. Otorhinolaryngol. 2018. V. 115. P. 19–23. https://doi.org/10.1016/j.ijporl.2018.09.008
  • Colletti L., Wilkinson E.P., Colletti V. Auditory brainstem implantation after unsuccessful cochlear implantation of children with clinical diagnosis of cochlear nerve deficiency // Ann Otol Rhinol Laryngol. 2013. V. 122(10). P. 605–612.
  • Cremers C.W.R.J. Genetic hearing impairment: its clinical presentations: ed. C.W.R.J. Cremers, R. Smith // Advances in oto-rhino-laryngology. 2002. V. 61. 248 p. https://doi.org/10.1159/isbn.978-3-318-00870-8
  • Cremers C.W.R.J., Smith R. Genetic hearing impairment: its clinical presentations. Volume editors // Advances in oto-rhino-laryngology. 2006. V. 61. 248 p.
  • Del Castillo F.J., Del Castillo I. DFNB1 Non-syndromic hearing impairment: diversity of mutations and associated phenotypes // Front Mol Neurosci. 2017. V. 10. P. 428. https://doi.org/10.3389/fnmol.2017.00428
  • Del Castillo I., Morín M., Domínguez-Ruiz M., Moreno-Pelayo M.A. Genetic etiology of non-syndromic hearing loss in Europe // Hum Genet. 2022. V. 141(3–4). P. 683–696. https://doi.org/10.1007/s00439-021-02425-6
  • Fettiplace R. Hair cell transduction, tuning and synaptic transmission in the mammalian cochlea // Compr Physiol. 2017. V. 4. P. 1197–1227. https://doi.org/10.1002/cphy.c160049
  • Freeman S.R., Sennaroglu L. Management of Cochlear nerve hypoplasia and aplasia // Adv Otorhinolaryngol. 2018. V. 81. P. 81–92. https://doi.org/10.1159/000485542
  • Friedman T.B., Belyantseva I.A, Frolenkov G.I. Myosins and hearing // Adv Exp Med Biol. 2020. V. 1239. P. 317–330. https://doi.org/10.1007/978-3-030-38062-5_13
  • Frolenkov G.I., Belyantseva I.A., Friedman T.B., Griffith A.J. Genetic insights into the morphogenesis of inner ear hair cells // Nat. Rev. Genet. 2004. V.5(7). P. 489–498. https://doi.org/10.1038/nrg1377
  • Goodyear R.J., Richardson G.P. Structure, function, and development of the tectorial membrane: an extracellular matrix essential for hearing // Curr Top Dev Biol. 2018. V. 130. P. 217–244. https://doi.org/10.1016/bs.ctdb.2018.02.006
  • Gorlin R.J., Toriello H.V., Cohen M.M. Hereditary hearing loss and its syndromes. Oxford: N.Y. 1995. 457 p.
  • Guo L., Xiang J., Sun L., Yan X., Yang J., Wu H., Guo K., Peng J., Xie X., Yin Y., Wang J., Yang H., Shen J., Zhao L., Peng Z. Concurrent hearing and genetic screening in a general newborn population // Hum Genet. 2020. V. 139. P. 521–530. https://doi.org/10.1007/s00439-020-02118-6
  • Gupta S., Samdani S., Vaishnav J.K., Singh Y., Grover M. Cochlear implantation in goldenhar syndrome // Indian J Otolaryngol Head Neck Surg. 2022. V. 74 (Suppl. 3) P. 4159–4163. https://doi.org/10.1007/s12070-021-02874-5
  • Harrison R.V., Gordon K.A., Papsin B.C., Negandhi J., James A.L. Auditory neuropathy spectrum disorder (ANSD) and cochlear implantation // Int J Pediatr Otorhinolaryngol. 2015. V. 79(12). P. 1980–1987. https://doi.org/10.1016/j.ijporl.2015.10.006
  • Hereditary hearing loss and its syndromes. Edited by Helga V. Toriello, Shelley D. Smith. 3rd ed. Oxford University press. 2013. 732 p.
  • Ito T., Kawashima Y., Fujikawa T. Rapid screening of copy number variations in STRC by droplet digital PCR in patients with mild-to-moderate hearing loss // Hum Genome Var. 2019. V. 6. P. 41. https://doi.org/10.1038/s41439-019-0075-5
  • Jahan I., Pan N., Kersigo J., Fritzsch B. Beyond generalized hair cells: molecular cues for hair cell types // Hear Res. 2013. V. 297. P. 30–41. https://doi.org/10.1016/j.heares.2012.11.008
  • John J., Guinan Jr. How are inner hair cells stimulated? Evidence for multiple mechanical drives // Hear Res. 2012. V. 292(1–2). P. 35–50. https://doi.org/10.1016/j.heares.2012.08.005
  • Kelsell D.P., Dunlop J., Stevens H.P., Lench N.J., Liang J.N., Parry G., Mueller R.F., Leigh I.M. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness // Nature. 1997. V. 387(6628). P.80–83. https://doi.org/10.1038/387080a0
  • Kenna M.A., Feldman H.A., Neault M.W., Frangulov A., Wu B.L., Fligor B., Rehm H.L. Audiologic phenotype and progression in GJB2 (connexin 26) hearing loss // Arch Otolaryngol Head Neck Surg. 2010. V.136(1). P. 81–87. https://doi.org/10.1001/archoto.2009.202
  • Kremer H. Hereditary hearing loss; about the known and the unknown // Hear. Res. 2019. V. 376. P. 58–68. https://doi.org/10.1016/j.heares.2019.01.003
  • Leclère J.C., Le Gac M.S., Le Maréchal C., Ferec C., Marianowski R. GJB2 mutations: Genotypic and phenotypic correlation in a cohort of 690 hearing-impaired patients, toward a new mutation? // Int J Pediatr Otorhinolaryngol. 2017. V. 102. P. 80–85 https://doi.org/10.1016/j.ijporl.2017.09.011
  • Lee J., Kawai K., Holt J.R., Géléoc G.S. Sensory transduction is required for normal development and maturation of cochlear inner hair cell synapses // Elife. 2021. V. 10. P. e69433. https://doi.org/10.7554/eLife.69433
  • Lefebvre P.P., Van De Water T.R. Connexins, hearing and deafness: clinical aspects of mutations in the connexin 26 gene // Brain Res Brain Res Rev. 2000. V. 32(1). P. 159–162. https://doi.org/10.1016/s0165-0173(99)00075-2
  • Liu X.Z., Walsh J., Mburu P., Kendrick-Jones J., Cope M.J., Steel K.P., Brown S.D. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness // Nat Genet. 1997. V. 16(2). P. 188–190. https://doi.org/10.1038/ng0697-188
  • Martini A., Stephens D., Read A.P. Genes, hearing, and deafness. From molecular biology to clinical practice. Informa UK Ltd. 2007. 316 p.
  • McGrath J., Roy P., Perrin B.J. Stereocilia morphogenesis and maintenance through regulation of actin stability // Semin Cell Dev Biol. 2017. V. 65. P. 88–95. https://doi.org/10.1016/j.semcdb.2016.08.017
  • Miyagawa M., Nishio S.Y., Usami S.A. Comprehensive study on the etiology of patients receiving Cochlear implantation with special emphasis on genetic epidemiology // Otol Neurotol. 2016. V. 37(2). P. 126–134. https://doi.org/10.1097/MAO.0000000000000936
  • Morton C.C., Nance W.E. Newborn hearing screening – a silent revolution // N. Engl. J. Med. 2006. V. 354. P. 2151–2164. https://doi.org/10.1056/NEJMra050700
  • Morton N.E. Genetic epidemiology of hearing impairment // Ann N Y Acad Sci. 1991. V. 630. P. 16–31.
  • Nayak G.D., Ratnayaka H.S.K., Goodyear R.J. Richardson G.P. Development of the hair bundle and mechanotransduction // Int. J. Dev. Biol. 2007. V. 51(6–7). P.597–608. https://doi.org/10.1387/ijdb.072392gn
  • Pandya A. Genetic hearing loss: the journey of discovery to destination – how close are we to therapy? // Mol Genet Genomic Med. 2016 V. 4(6). P. 583–587. https://doi.org/10.1002/mgg3.260
  • Park J., Jonathan E. The actin cytoskeleton in hair bundle development and hearing loss // Hear Res. 2023. V. 436. P. 108817. https://doi.org/10.1016/j.heares.2023.108817
  • Petersen M.B., Willems P.J. Non-syndromic, autosomal-recessive deafness // Clin. Genet. 2006. V.69. P.371–392.
  • Petit C., Bonnet C., Safieddine S. Deafness: from genetic architecture to gene therapy // Nat Rev Genet. 2023. V. 24(10). P. 665–686. https://doi.org/10.1038/s41576-023-00597-7
  • Petit С., Richardson G.P. Linking deafness genes to hair-bundle development and function // Nat Neurosci. 2009. V. 12(6). P. 703–710. https://doi.org/10.1038/nn.2330
  • Rabionet R., Gasparini P., Estivill X. Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins // Hum Mutat. 2000. V. 16(3). P. 190–202. https://doi.org/10.1002/1098-1004(200009)16:3<190::AID-HUMU2>3.0.CO;2-I
  • Rajput K., Saeed M., Ahmed J., Chung M., Munro C., Patel S., Leal C., Jiang D., Nash R. Findings from aetiological investigation of Auditory Neuropathy Spectrum Disorder in children referred to cochlear implant programs // Int J Pediatr Otorhinolaryngol. 2019. V. 116. P. 79–83. https://doi.org/10.1016/j.ijporl.2018.10.010
  • Ricci G., Trabalzini F., Faralli M., D'Ascanio L., Cristi C., Molini E. Cochlear implantation in children with “CHARGE syndrome”: surgical options and outcomes // Eur Arch Otorhinolaryngol. 2014. V. 271(3). P. 489–493. https://doi.org/10.1007/s00405-013-2424-1
  • Richardson G.P., de Monvel J.B., Petit C. How the genetics of deafness illuminates auditory physiology // Annu Rev Physiol. 2011. V. 73. P. 311–334. https://doi.org/10.1146/annurev-physiol-012110-142228
  • Richardson G.P., Petit C. Hair-bundle links: genetics as the gateway to function // Cold Spring Harb Perspect Med. 2019. V. 9(12). P. a033142. https://doi.org/10.1101/cshperspect.a033142
  • Santarelli R., Scimemi P., Costantini M., Domínguez-Ruiz M., Rodríguez-Ballesteros M., Del Castillo I. Cochlear synaptopathy due to mutations in OTOF gene may result in stable mild hearing loss and severe impairment of speech perception // Ear Hear. 2021. V. 42(6). P. 1627–1639. https://doi.org/10.1097/AUD.0000000000001052
  • Sellon J.B., Ghaffari R., Freeman D.M. The tectorial membrane: mechanical properties and functions // Cold Spring Harb Perspect Med. 2019. V. 9(10). P. a033514. https://doi.org/10.1101/cshperspect.a033514
  • Shearer A.E., DeLuca A.P., Hildebrand M.S. Taylor K.R., Gurrola J., Scherer S., Scheetz T.E., Smith R.J. Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing // Proc Natl Acad Sci USA. 2010. V. 107. P. 21104–21109. https://doi.org/10.1073/pnas.1012989107
  • Shearer A.E., Eppsteiner R.W., Frees K., Tejani V., Sloan-Heggen C.M., Brown C., Abbas P., Dunn C., Hansen M.R., Gantz B.J., Smith R.J.H. Genetic variants in the peripheral auditory system significantly affect adult cochlear implant performance // Hear Res. 2017 V. 348. P. 138–142. https://doi.org/10.1016/j.heares.2017.02.008
  • Shearer A.E., Hansen M.R. Auditory synaptopathy, auditory neuropathy, and cochlear implantation. Laryngoscope Investig Otolaryngol. 2019. V. 4(4). P. 429–440. https://doi.org/10.1002/lio2.288
  • Shearer A.E., Hildebrand M.S., Smith R.J.H. Hereditary hearing loss and deafness overview. 1999 Feb 14 [Updated 2017 Jul 27]. In: Adam MP, Everman DB, Mirzaa GM, Et Al., Editors. Genereviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023. Available from: https://www.Ncbi.Nlm.Nih.Gov/Books/NBK1434/
  • Shearer A.E., Smith R.J. Massively parallel sequencing for genetic diagnosis of hearing loss: the new standard of care // Otolaryngol Head Neck Surg. 2015. V. 153(2). P. 175–182. https://doi.org/10.1177/0194599815591156
  • Sloan-Heggen C.M., Bierer A.O., Shearer A.E., Kolbe D.L., Nishimura C.J., Frees K.L., Ephraim S.S., Shibata S.B., Booth K.T., Campbell C.A., Ranum P.T., Weaver A.E., Black-Ziegelbein E.A., Wang D., Azaiez H., Smith R.J.H. Сomprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss // Hum Genet. 2016. V. 135. P. 441–450. https://doi.org/10.1007/s00439-016-1648-8
  • Smith R.J., BaleJr J.F., White K.R. Sensorineural hearing loss in children // Lancet. 2005. V. 365. P. 879–890.
  • Snoeckx R.L., Huygen P.L., Feldmann D., Marlin S., Denoyelle F., Waligora J., Mueller-Malesinska M., Pollak A., Ploski R., Murgia A., Orzan E., Castorina P., Ambrosetti U., Nowakowska-Szyrwinska E., Bal J., Wiszniewski W., Janecke A.R., Nekahm-Heis D., Seeman P., Bendova O., Kenna M.A., Frangulov A., Rehm H.L., Tekin M., Incesulu A., Dahl H.H., du Sart D., Jenkins L., Lucas D., Bitner-Glindzicz M., Avraham K.B., Brownstein Z., del Castillo I., Moreno F., Blin N., Pfister M., Sziklai I., Toth T., Kelley P.M., Cohn E.S., Van Maldergem L., Hilbert P., Roux A.F., Mondain M., Hoefsloot L.H., Cremers C.W., Löppönen T., Löppönen H., Parving A., Gronskov K., Schrijver I., Roberson J., Gualandi F., Martini A., Lina-Granade G., Pallares-Ruiz N., Correia C., Fialho G., Cryns K., Hilgert N., Van de Heyning P., Nishimura C.J., Smith R.J., Van Camp G. GJB2 mutations and degree of hearing loss: a multicenter study // Am J Hum Genet. 2005. V. 77(6). P. 945–957. https://doi.org/10.1086/497996
  • Sommen M., Schrauwen I., Vandeweyer G., Boeckx N., Corneveaux J.J., van den Ende J., Boudewyns A., De Leenheer E., Janssens S., Claes K., Verstreken M., Strenzke N., Predöhl F., Wuyts W., Mortier G., Bitner-Glindzicz M., Moser T., Coucke P., Huentelman M.J., Van Camp G. DNA diagnostics of hereditary hearing loss: a targeted resequencing approach combined with a mutation classification system // Hum Mutat. 2016. V. 37(8). P. 812–819. https://doi.org/10.1002/humu.22999
  • Sun L., Lin Z., Zhang J., Shen J., Wang X., Yang J. Genetic etiological analysis of auditory neuropathy spectrum disorder by next-generation sequencing // Front Neurol. 2022. V. 13. P. 1026695. https://doi.org/10.3389/fneur.2022.1026695
  • Toriello H.V., Cohen M.M., Gorlin R.J. Hereditary hearing loss and its syndromes. Oxford: N.Y. 2004. 502 p.
  • Usami S.I., Nishio S.Y., Moteki H., Miyagawa M., Yoshimura H. Cochlear implantation from the perspective of genetic background // Anat Rec (Hoboken). 2020. V. 303(3). P. 563–593. https://doi.org/10.1002/ar.24360
  • van Beeck Calkoen E.A., Engel M.S.D., van de Kamp J.M., Yntema H.G., Goverts S.T., Mulder M.F., Merkus P., Hensen E.F. The etiological evaluation of sensorineural hearing loss in children // Eur J Pediatr. 2019. V.178(8). P. 1195–1205. https://doi.org/10.1007/s00431-019-03379-8
  • Van Camp G., Smith R.J.H. Hereditary hearing loss homepage. https://hereditaryhearingloss.org
  • Verpy E., Leibovici M., Michalski N., Goodyear R.J., Hou– don C., Weil D., Richardson G.P., Petit C. Stereocilin connects outer hair cell stereocilia to one another and to the tectorial membrane // J Comp Neurol. 2011. V. 519(2). P. 194–210. https://doi.org/10.1002/cne.22509
  • Vincenti V., Di Lella F., Falcioni M., Negri M., Zanetti D. Cochlear implantation in children with CHARGE syndrome: a report of eight cases // Eur Arch Otorhinolaryngol. 2018. V. 275(8). P. 1987–1993. https://doi.org/10.1007/s00405-018-5053-x
  • Vona B., Rad A., Reisinger E. The many faces of DFNB9: relating OTOF variants to hearing impairment // Genes (Basel). 2020. V. 11(12). P. 1411. https://doi.org/10.3390/genes11121411
  • Wang H., Guan L., Wu X., Guan J., Li J., Li N., Wu K., Gao Y., Bing D., Zhang J., Lan L., Shi T., Li D., Wang W., Xie L., Xiong F., Shi W., Zhao L., Wang D., Yin Y., Wang Q. Clinical and genetic architecture of a large cohort with auditory neuropathy // Hum Genet. 2024. https://doi.org/10.1007/s00439-024-02652-7
  • Wu C.C., Lin Y.H., Liu T.C., Lin K.N., Yang W.S., Hsu C.J., Chen P.L., Wu C.M. Identifying children with poor Cochlear implantation outcomes using massively parallel sequencing // Medicine (Baltimore). 2015. V. 94(27). P. e1073. https://doi.org/10.1097/MD.0000000000001073
  • Xiang J., Yang J., Chen L., Chen Q., Yang H., Sun C., Zhou Q., Peng Z. Reinterpretation of common pathogenic variants in ClinVar revealed a high proportion of downgrades // Sci Rep. 2020. V. 10(1). P. 331. https://doi.org/10.1038/s41598-019-57335-5
  • Zazo-Seco C., Wesdorp M., Feenstra I., Pfundt R., Hehir-Kwa J.Y., Lelieveld, S.H., Castelein S., Gilissen C., de Wijs I.J., Admiraal R.J., Pennings R.J., Kunst H.P., van de Kamp J.M., Tamminga S., Houweling A.C., Plomp A.S., Maas S.M., de Koning Gans P.A., Kant S.G., de Geus C.M., Frints S.G., Vanhoutte E.K., van Dooren M.F., van den Boogaard M.H., Scheffer H., Nelen M., Kremer H., Hoefsloot L., Schraders M., Yntema H.G. The diagnostic yield of whole-exome sequencing targeting a gene panel for hearing impairment in The Netherlands // Eur. J. Hum. Genet. 2017. V. 25(3). P. 308–314. https://doi.org/10.1038/ejhg.2016.182