Cochlear implantation is a unique development in the field of prosthetics of human sensory systems. Due to the
electrical stimulation of the auditory nerve, auditory sensations close to natural occur. Despite significant progress
in the engineering design of cochlear implants (CI), the quality of auditory perception when used is significantly
limited. CI users experience the greatest difficulties in communication tasks such as understanding speech in noise or
in multi-talkers environment. There are many factors, both technical and physiological, to reduce speech intelligibility
in CI users. Speech perception in CI users is limited due to low frequency resolution, perceptual distortion of pitch,
and compression of dynamic range. Low frequency resolution is the reason a decrease in speech intelligibility and the
ability to perceive music. To realize these ability the question about the state of central hearing mechanisms,
especially for children with congenital deafness, is crucial Neuroplasticity with ages decreases and the central
auditory processing deficiency develops, therefore, it is desirable to carry out cochlear implantation as early as
possible after hearing loss identification. Analysis of the auditory perception features in case of the auditory nerve
is electrically excited allows not only to propose innovative approaches to improve the auditory abilities of CI users,
but also to study auditory processing disorders.
Key words:
cochlear implantation, pitch, loudness, differential frequency threshold, speech intelligibility
DOI: 10.31857/S0235009223040066
EDN: CNYEVZ
Cite:
Pudov V. I., Zontova O. V.
Slukhovoe vospriyatie pri kokhlearnoi implantatsii
[Hearing perception by cochlear implantation].
Sensornye sistemy [Sensory systems].
2023.
V. 37(4).
P. 320–329 (in Russian). doi: 10.31857/S0235009223040066
References:
- Aldoshina I.A., Pritts R. Muzikalinay acustica [Musical acoustics]. St. Petersburg: Composer, 2006. 720 p. (in Russian).
- Boboshko M.Yu., Berdnikova I.P., Salakhbekov M.A., Maltseva N.V. Psichoacusticheskie metodu v diagnostike centralinuch naruschenii slucha pri sensonevralinoi tugouchosti [Psychoacoustic methods in the diagnosis of central hearing disorders in sensorineural hearing loss]. Rossiiskay otorinolaryngologii [Russian Otorhinolaryngology]. 2017. № 2 (87). P. 9–16 (in Russian). https://doi.org/10.18692/1810-4800-2017-2-9-16
- Koroleva I.V. Kochlearnay implantaciy i sluchorechevay reabilitaciy gluchich detei i vzrosluch [Cochlear implantation and auditory-speech rehabilitation of deaf children and adults]. SPb. KARO, 2009. 186 p. ISBN 978-5-9925-0348-7 (in Russian).
- Koroleva I.V. Vvedenie v kochlearnuy implantaciy [Introduction to cochlear implantation]. SPb. KARO, 2023. 224 p. ISBN: 978-5-9925-1644-9 (in Russian).
- Pudov V.I., Stefanovich M.A. Vospriytie muziki polizovatelymi kochlearnuch implantov [Perception of music by cochlear implant users]. Rossiiskay otorinolaringologiy [Russian Otorhinolaryngology]. 2010. № 2 (45). P. 114–119 (in Russian).
- Stefanovich M.A., Pudov V.I. Osobennosty sluchovuch oschuschenii pri elektrodnom protezirovanii [Features of auditory sensations during electrode prosthetics]. 2013. 126 p. ISBN: 978-3-659-40813-7 (in Russian).
- Tavartkiladze G.A. Sovremennoe sostoynie i perspektivu razvitiy kochlearnoi implantacii [The current state and prospects of the development of cochlear implantation]. Vestnik otorinolaringologii [Vestnik Oto-RinoLaringologii]. 2015. № 80 (3). P. 4–9. https://doi.org/10.17116/otorino20158034-9 (in Russian).
- Bissmeyer S.R., Hossain S., Goldsworthy R.L. Perceptual learning of pitch provided by cochlear implant stimulation rate. PLoS ONE. 2020. 15 (12). e0242842. https://doi.org/10.1371/journal.pone.0242842
- Caldwell M.T., Jiam N.T., Limb C.J. Assessment and Improvement of Sound Quality in Cochlear Implant Users. Laryngoscope Investigative Otolaryngology. 2017. № 2. P. 110–124. https://doi.org/10.1002/lio2.71
- Canfarotta M., Dillon M., Brown K., Pillsbury H., Dedmon M., O’Connell B. Insertion Depth and Cochlear Implant Speech Recognition Outcomes: A Comparative Study of 28- and 31.5-mm Lateral Wall Arrays. Otol. Neurotol. 2022. № 43 (2). P. 183–189. https://doi.org/10.1097/MAO.0000000000003416
- Cesur S., Derinsu U. Temporal Processing and Speech Perception Performance in Postlingual Adult Users of Cochlear Implants. J. Am. Acad. Audiol. 2020. № 31. P. 129–136. https://doi.org/10.3766/jaaa.19002
- Chen F., Chen J., Luo X. New discoveries in the benefits and outcomes of cochlear implantation. Neurosci., Sec. Auditory Cognitive Neuroscience. 2022. V. 16. https://doi.org/10.3389/fnins.2022.1062582
- Dianzhao X., Jianfen L., Xiuhua Ch. Relationship between the ability to detect frequency changes or temporal gaps and speech perception performance in post-lingual cochlear implant users. Neurosci., Sec. Auditory Cognitive Neuroscience. 2022. V. 16. https://doi.org/10.3389/fnins.2022.904724
- Divenyi P., Shannon R. Auditory time constants unified. J. Acoust. Soc. Am. 1983. V. 74. S10. https://doi.org/10.1121/1.2020735
- Dorman M.F., Spahr A.J. Speech perception by adults with multichannel implants. Eds: Waltzman S.B., Roland J.T., Jr. Cochlear Implants, second ed. Thieme Medical Publishers. New York, 2006. 193–204.
- Dorman M.F., Wilson B.S. The design and function of cochlear implants. Am. Sci. 2004. V. 92. 436–445.
- Forli F., Lazzerini F., Bruschini L., Danti S., Berrettini S. Recent and future developments in cochlear implant technology: review of the literature. Otorhino-laryngology. 2021. V. 71 (3). 196–207. https://doi.org/10.23736/S2724-6302.21.02379-3
- Freyman R.L., Nelson D.A. Frequency Discrimination as a Function of Signal Frequency and Level in NormalHearing and Hearing-Impaired Listeners. J. Speech Lang. Hear. Res. 1991. V. 34. № 6. P. 1371–1386.
- Gelfand S.A. Hearing: An introduction to psychological and physiological acoustics. 5th ed. London. Informa Healthcare, 2009. 311 p.
- Glennon E., Svirsky M.A., Froemke R.C. Auditory cortical plasticity in cochlear implant users. Neurobiol.2020. V. 60. P. 108–114.
- Goldsworthy R. Correlations Between Pitch and Phoneme Perception in Cochlear Implant Users and Their Normal Hearing Peers. J. Assoc. Res. Otolaryngol. 2015. V. 16 (6). P. 797–809. https://doi.org/10.1007/s10162-015-0541-9
- Kang R., Nimmons G.L., Drennan W., Longnion J., Ruffin C., Nie K. Development and validation of the university of Washington clinical assessment of music perception test. Ear Hear. 2009. V. 30. P. 411–418. https://doi.org/10.1097/AUD.0b013e3181a61bc0
- Ketten D.R., Skinner M.W., Wang G., Vannier M.W., Gates G.A., Neely J.G. In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann. Otol. Rhinol. Laryngol. 1998. Suppl. 175. P. 1–16
- Kim S.Y., Jeon S.K., Oh S.H., Lee J.H., Suh M.W., Lee S.Y., Lim H.J., Park M.K. Electrical dynamic range is only weakly associated with auditory performance and speech recognition in long-term users of cochlear implants. Intern. J. Pediat. Otorhinolaryngol. 2018. V. 111. P. 170–173. https://doi.org/10.1016/j.ijporl.2018.06.016
- Limb Ch.J., Alexis Roya A.T. Technological, biological, and acoustical constraints to music perception in cochlear implant users. Hearing Research. 2014. V. 308. P. 13–16. https://doi.org/10.1016 /j.heares.2013.04.009
- Loizou P., Dorman M., Fitzke J. The Effect of Reduced Dynamic Range on Speech Understanding: Implications for Patients with Cochlear Implants. Ear and Hearing. 2000. V. 21 (1). P. 25–31.
- Meredith T., Nicole T., Charles J. Assessment and improvement of sound quality in cochlear implant users. Laryngoscope Investigative Otolaryngology. 2017. V. 2. P. 119–124. https://doi.org/10.1002/lio2.71
- Nikakhlagh S., Saki N., Karimi M., Mirahmadi S., Rostami M. R. Evaluation of Loudness Perception Performance in Cochlear Implant Users. Biomed Pharmacol J. 2015. V. 8. http://biomedpharmajournal.org/?p=2280>
- Plomp R., Bouman M. Relation between Hearing Threshold and Duration for Tone Pulses. J. Acoust. Soc. Am. 1959. V. 31. P. 749–758. https://doi.org/10.1121/1.1907781
- Pralus A., Hermann R., Cholvy F., Aguera P., Moulin A. Rapid Assessment of Non-Verbal Auditory Perception in Normal-Hearing Participants and Cochlear Implant Users. J. Clin. Med. 2021. V. 10(10). P. 90–93. https://doi.org/10.3390/jcm10102093
- Rawool V.W. A temporal processing primer. Hearing Review. 2006. V. 13 (5). P. 30–34.
- Reiss L.A., Turner C.W., Erenberg S.R., Gantz B.J. Changes in pitch with a cochlear implant over time. J. Assoc. Res. Otolaryngol. 2007. V. 8 (2). P. 241–257. https://doi.org/10.1007/s10162-007-0077-8
- Sharma S.D., Cushing S.L., Papsin B.C., Gordon K.A. Hearing and speech benefits of cochlear implantation in children: A review of the literature. J. Pediatr. Otorhinolaryngol. 2020. V. 133. 109984. https://doi.org/10.1016/j.ijporl.2020.109984
- Sharma A., Dorman M. Central auditory development in children with cochlear implants: clinical implications. Adv. Otorhinolaryngol. 2006. V. 64. P. 66–88. https://doi.org/10.1159/000094646
- Stakhovskaya O., Sridhar D., Bonham B.H., Leake P.A. Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. J. Assoc Res Otolaryngol. 2007. V. 8. P. 22–33. https://doi.org/10.1007/s10162-007-0076-9
- Turgeon C., Champoux F., Lepore F., Ellemberg D. Deficits in auditory frequency discrimination and speech recognition in cochlear implant users. Cochlear Implants Int. 2015. V. 16 (2). P. 88–94. https://doi.org/10.1179/1754762814Y.0000000091 PMID: 25117940
- Wagner L., Altindal R., Plontke S.K. et al. Pure tone discrimination with cochlear implants and filter-band spread. Sci Rep. 2021. V. 11. 20236. https://doi.org/10.1038/s41598-021-99799-4
- Wilson B., Dorman M. Cochlear implants: A remarkable past and a brilliant future. Hearing Research. 2008. V. 242. P. 3–21.
- Wilson B.S., Finley C.C., Lawson D.T., Wolford R.D., Eddington D.K., Rabinowitz W.M. Better speech recognition with cochlear implants. Nature. 1991. V. 352. P. 236–238.
- Winn M., Won J., Moon I. Assessment of spectral and temporal resolution in cochlear implant users using psychoacoustic discrimination and speech cue categorization. Ear. Hear. 2016. V. 37 (6). P. 377–390. https://doi.org/10.1097/AUD.0000000000000328
- Wright A., Davis A., Bredberg G., Ulehlova L., Spencer H. Hair cell distributions in the normal human cochlea. Acta Otolaryngol. 1987. Suppl. 444. P. 1–48.
- Zeng F., Tang Q., Lu T. Abnormal Pitch Perception Produced by Cochlear Implant Stimulation. PLoS ONE. 2014. V. 9 (2). 8 p. e88662. https://doi.org/10.1371/journal.pone.0088662
- Zhang F., Underwood G., Mc Guire K., Liang C., Moore D., Jie Fu Q. Frequency change detection and speech perception in cochlear implant users. Hearing Research. 2019. V. 379. P. 12–20.