• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Тhe role of auditory feedback in voice control with normal and impaired hearing

© 2023 A. M. Lunichkinа, K. S. Shtin

I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS 194223 Saint-Petersburg, рr. Torez, 44, Russia

Received 04 Sep 2023

Control of speech fulfilled by cooperation between feedforward control and feedback control. Feedforward control activates program of articulation, whereas feedback control carries acoustic and sensorimotor information about pronounced utterance. Their complementary speech control function described by the DIVA model, which based on adjustment of auditory and proprioceptive signals relatively to program of articulation in nerve centers. The inconsistency between the sensory information received via feedback and the presentation of the acoustic signal in the auditory nucleus causes corrective commands. Auditory feedback is necessary for the correct development of children’s articulatory skills, i.e. forming feedforward control. For this reason, prelingually deafened adults have significant articulation impairments due to immature articulatory skills. In postlingual deafness, the previously forming feedforward control allows pronounce phonemes successfully. However, in people with sensorineural hearing loss, control of phonation and articulation through the auditory feedback deteriorates, which expressed by an increase of voice intensity, changes in the speech spectral characteristics and instability in frequency and amplitude. Similar speech changes are found in speakers with normal hearing in the presence of noise that masks the speaker’s voice (Lombard effect). In noise, voice intensity increase, spectral characteristics of speech shift to the high-frequency region, and increase the amplitude and speed of articulatory movements (hyperarticulation). This speech reorganization is an adaptation of the speaker’s own voice to background noise, which purpose is to unmask the speech and restore auditory feedback control.

Key words: audiomotor control, feedback control, speech, voice, Lombard effect, sensorineural hearing loss, DIVA model

DOI: 10.31857/S0235009223040042  EDN: HLWQBD

Cite: Lunichkinа A. M., Shtin K. S. Rol slukhovoi obratnoi svyazi v kontrole golosa pri normalnom i snizhennom slukhe [Тhe role of auditory feedback in voice control with normal and impaired hearing ]. Sensornye sistemy [Sensory systems]. 2023. V. 37(4). P. 285–300 (in Russian). doi: 10.31857/S0235009223040042

References:

  • Andreeva I.G., Kulicov G.A. Charakteristika pevcheskich glasnuch pri raznoi chastote osnovnogo tona [Sung vowels’ characteristics under different fundamental frequency]. Sensornye sistemy [Sensory systems]. 2004. V. 18 (2). P. 172–179 (in Russian).
  • Lunichkin A.M., Andreeva I.G., Zaitseva L.G., Gvozdeva A.P., Ogorodnikova E.A. Izmenenie spektralinuch charakteristik glasnuch zvukov v russkoi rechi na fone schuma [Changes in the spectral characteristics of vowels in Russian speech on a noise background]. Acusticheskii zurnal [Acoustical Journal]. 2023. V. 69 (3). P. 357–366 (in Russian). https://doi.org/10.1134/S1063771023600237
  • Shtin K.S., Lunichkin A.M., Gvozdeva A.P., L. Golovanova L.E., Andreeva I.G. Spektralinue charakteristiki kardinalinuch glaznuch zvukov kak pokazateli sluchorechevoi obratnoi svyzi u pacientov s postlingvalinoi chroniceskoi sensonevralinoi tugouchostiy 2 i 3 stepeni [Spectral characteristics of cardinal vowels as indicators of the auditory speech feedback control in patients with moderate and moderately severe chronic postlingual sensorineural hearing loss]. Rossiiskii fiziologicheskii zurnal [Journal of Evolutionary Biochemistry and Physiology]. 2023. V. 59 (4). P. 596–606. https://doi.org/10.31857/S0869813923040106 (in Russian)
  • Alghamdi N., Maddock S., Marxer R., Barker J., Brown G. A corpus of audio-visual Lombard speech with frontal and profile views. The Journal of the Acoustical Society of America. 2018. V. 143 (6). P. 523–529. https://doi.org/10.1121/1.5042758
  • Amazi D.K., Garber S.R. The Lombard sign as a function of age and task. Journal of Speech, Language, and Hearing Research. 1982. V. 25 (4). P. 581–585. https://doi.org/10.1044/jshr.2504.581
  • Anand S., Gutierrez D., Bottalico P. Acoustic-perceptual correlates of voice among steam train engineers: effects of noise and hearing protection. Journal of voice: official journal of the Voice Foundation. 2023. V. 37 (3). P. 366–373. https://doi.org/10.1016/j.jvoice.2021.01.006
  • Bond Z., Moore T., Gable B. Acoustic–phonetic characteristics of speech produced in noise and while wearing an oxygen mask. The Journal of the Acoustical Society of America. 1989. V. 85 (2). P. 907–912. https://doi.org/10.1121/1.397563
  • Bottalico P. Lombard effect, ambient noise, and willingness to spend time and money in a restaurant. The Journal of the Acoustical Society of America. 2018. V. 144 (3). P. 209–214. https://doi.org/10.1121/1.5055018
  • Bottalico P., Graetzer S., Hunter E.J. Effect of training and level of external auditory feedback on the singing voice: volume and quality. Journal of Voice. 2016. V. 30 (4). P. 434–442. https://doi.org/10.1016/j.jvoice.2015.05.010
  • Bottalico P., Passione I., Graetzer S., Hunter E. Evaluation of the starting point of the Lombard effect. Acta Acustica United with Acustica. 2017. V. 103 (1). P. 169–172. https://doi.org/10.3813/AAA.919043
  • Bottalico P., Piper R., Legner B. Lombard effect, intelligibility, ambient noise, and willingness to spend time and money in a restaurant amongst older adults. Scientific Reports. 2022. V. 12 (1). P. 1–9. https://doi.org/10.1038/s41598-022-10414-6
  • Bouchard K., Chang, E. Control of spoken vowel acoustics and the influence of phonetic context in human speech sensorimotor cortex. Journal of Neuroscience. 2014. V. 34 (38). P. 12662–12672. https://doi.org/10.1523/JNEUROSCI.1219-14.2014
  • Bradlow A., Torretta G., Pisoni D. Intelligibility of normal speech I: Global and fine-grained acoustic-phonetic talker characteristics. Speech Communication. 1996. V. 20. P. 255–272. https://doi.org/10.1016/S0167-6393(96)00063-5
  • Campisi P., Low A., Papsin B., Mount R., Harrison R. Multidimensional voice program analysis in profoundly deaf children: quantifying frequency and amplitude control. Perceptual and Motor Skills. 2006. V. 103 (1). P. 40–50. https://doi.org/10.2466/pms.103.1.40-50
  • Coelho A., Brasolotto A., Bahmad F. Development and validation of the protocol for the evaluation of voice in subjects with hearing impairment. Brazilian Journal of Otorhinolaryngology. 2019. V. 86 (6). P. 748–762. https://doi.org/10.1016/j.bjorl.2019.05.007
  • Coelho A., Medved D., Brasolotto A. Hearing loss and Voice. In: Update on Hearing Loss. InTech. 2015. https://doi.org/10.5772/61217
  • Cooke M., Lu Y. Spectral and temporal changes to speech produced in the presence of energetic and informational maskers. The Journal of the Acoustical Society of America. 2010. V. 128 (4). P. 2059–2069. https://doi.org/10.1121/1.3478775
  • Das B., Chatterjee I., Kumar S. Laryngeal aerodynamics in children with hearing impairment versus age and height matched normal hearing peers. ISRN Otolaryngology. 2013. https://doi.org/10.1155/2013/394604
  • Garnier M., Bailly L., Dohen M., Welby P., Lœvenbruck, H. An acoustic and articulatory study of Lombard speech: global effects on the utterance. https://hal.science/hal-00370947.html
  • Garnier M., Dohen M., Loevenbruck H., Welby P., Bailly L. The Lombard Effect: a physiological reflex or a controlled intelligibility enhancement? https://hal.science/hal-00214307.html
  • Garnier M., Henrich N. Speaking in noise: How does the Lombard effect improve acoustic contrasts between speech and ambient noise? Computer Speech & Language. 2014. V. 28 (2). P. 580–597. https://doi.org/10.1016/j.csl.2013.07.005
  • Garnier M., Henrich N., Dubois D. Influence of sound immersion and communicative interaction on the Lombard effect. Journal of Speech, Language, and Hearing Research. 2010. V. 53 (3). P. 588–608. https://doi.org/10.1044/1092-4388(2009/08-0138)
  • Garnier M., Ménard L., Alexandre B. Hyper-articulation in Lombard speech: An active communicative strategy to enhance visible speech cues? The Journal of the Acoustical Society of America. 2018. V. 144 (2). P. 1059–1074. https://doi.org/10.1121/1.5051321
  • Gautam A., Naples J., Eliades S. Control of speech and voice in cochlear implant patients. The Laryngoscope. 2019. V. 129 (9). P. 2158–2163. https://doi.org/10.1002/lary.27787
  • Gervain J., Mehler J. Speech perception and language acquisition in the first year of life. Annual Review of Psychology. 2010. V. 61. P. 191–218. https://doi.org/10.1146/annurev.psych.093008.100408
  • Graven S., Brown J. Auditory development in the fetus and infant. Newborn and Infant Nursing Reviews; NAINR. 2008. V. 8 (4). P. 187–193. https://doi.org/10.1053/j.nainr.2008.10.010
  • Guenter F. Neural control of speech. London, England, The MIT Press. 2016. 420 p.
  • Guenther F. Speech sound acquisition, coarticulation and rate effects in a neural network model of speech production. Psychological Review. 1995. V. 102 (3). P. 594–621. https://doi.org/10.1037/0033-295x.102.3.594
  • Guenther F., Ghosh S., Tourville J. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain & Language. 2006. V. 96 (3). P. 280–301. https://doi.org/10.1016/j.bandl.2005.06.001
  • Guenther F., Vladusich T. A neural theory of speech acquisition and production. Journal of Neurolinguistics. 2012. V. 25 (5). P. 408–422. https://doi.org/10.1016/j.jneuroling.2009.08.006
  • Hadley L., Brimijoin W., Whitmer W. Speech, movement, and gaze behaviours during dyadic conversation in noise. Scientific reports. 2019. V. 9 (1). P. 1–8. https://doi.org/10.1038/s41598-019-46416-0
  • Hage S., Jürgens U., Ehret G. Audio–vocal interaction in the pontine brainstem during self-initiated vocalization in the squirrel monkey. European Journal of Neuroscience. 2006. V. 23 (12). P. 3297–3308. https://doi.org/10.1111/j.1460-9568.2006.04835.x
  • Hage S., Nieder A. Dual neural network model for the evolution of speech and language. Trends in neurosciences. 2016. V. 39 (12). P. 813–829. https://doi.org/10.1016/j.tins.2016.10.006
  • Halfwerk W., Lea A., Guerra M., Page R., Ryan M. Vocal responses to noise reveal the presence of the Lombard effect in a frog. Behavioral Ecology and Sociobiology. 2006. V. 27. P. 669–676. https://doi.org/10.1093/beheco/arv204
  • Hazan V., Baker R. Acoustic-phonetic characteristics of speech produced with communicative intent to counter adverse listening conditions. The Journal of the Acoustical Society of America. 2011. V. 130 (4). P. 2139–2152. https://doi.org/10.1121/1.3623753
  • Hazan V., Markham D. Acoustic-phonetic correlates of talker intelligibility for adults and children. The Journal of the Acoustical Society of America. 2004. V. 116 (5). P. 3108–3118. https://doi.org/10.1121/1.1806826
  • Higgins M., Carney A., Schulte L. Physiological assessment of speech and voice production of adults with hearing loss. Journal of Speech and Hearing Research. 1994. V. 37 (3). P. 510–521. https://doi.org/10.1044/jshr.3703.510
  • Hocevar-Boltezar I., Vatovec J., Gros A., Zagri M. The influence of cochlear implantation on some voice parameters. International Journal of Pediatric Otorhinolaryngology. 2005. V. 69 (12). P. 1635–1640. https://doi.org/10.1016/j.ijporl.2005.03.045
  • Holt D., Johnston C. Evidence of the Lombard effect in fishes. Behavioral Ecology and Sociobiology. 2014. V. 25. P. 819–826. https://doi.org/10.1093/beheco/aru028
  • Hotchkin C., Parks S. The Lombard effect and other noiseinduced vocal modifications: insight from mammalian communication systems. Biological Reviews. 2013. V. 88 (4). P. 809–824. https://doi.org/10.1111/brv.12026
  • Huber J., Chandrasekaran B. Effects of increasing sound pressure level on lip and jaw movement parameters and consistency in young adults. Journal of Speech, Language, and Hearing Research. 2006. V. 49 (6). P. 1368. https://doi.org/10.1044/1092-4388(2006/098)
  • Ito T., Ostry D. Somatosensory contribution to motor learning due to facial skin deformation. Journal of Neurophysiology. 2010. V. 104 (3). P. 1230–1238. https://doi.org/10.1152/jn.00199.2010
  • Jokinen E., Remes U., Alku P. The use of read versus conversational Lombard speech in spectral tilt modeling for intelligibility enhancement in near-end noise conditions. Interspeech. 2016. P. 2771–2775. https://doi.org/10.21437/Interspeech.2016-143
  • Junqua J. The Lombard reflex and its role on human listeners and automatic speech recognizers. The Journal of the Acoustical Society of America. 1993. V. 93. P. 510–524. https://doi.org/10.1121/1.405631
  • Junqua J., Fincke S., Field K. The Lombard effect: A reflex to better communicate with others in noise. IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. 1999. V. 4. P. 2083–2086. https://doi.org/10.1109/ICASSP.1999.758343
  • Keough D., Hawco C., Jones J. Auditory-motor adaptation to frequency-altered auditory feedback occurs when participants ignore feedback. BMC Neuroscience. 2013. V. 9. P. 14–25. https://doi.org/10.1186/1471-2202-14-25
  • Kim J., Davis C., Vignali G., Hill H. A visual concomitant of the Lombard reflex. AVSP. 2005. P. 17–22.
  • Kleczkowski P., Żak A., Król-Nowak A. Lombard effect in Polish speech and its comparison in English speech. Archives of Acoustics. 2017. V. 42 (4). P. 561–569. https://doi.org/10.1515/aoa-2017-0060
  • Lam J., Tjaden K. Intelligibility of clear speech: Effect of instruction. Journal of Speech, Language, and Hearing Research. 2013. V. 56 (5). P. 1429–1440. https://doi.org/10.1044/1092-4388(2013/12-0335)
  • Lane H., Tranel B. The Lombard sign and the role of hearing in speech. Journal of Speech and Hearing Research. 1971. V. 14 (4). P. 677–709. https://doi.org/10.1044/jshr.1404.677
  • Larson C., Altman K., Liu H., Hain T. Interactions between auditory and somatosensory feedback for voice F0 control. Experimental Brain Research. 2008. V. 187 (4). P. 613–621. https://doi.org/10.1007/s00221-008-1330-z
  • Lau P. The Lombard Effect as a communicative phenomenon. UC Berkeley PhonLab Annual Report. 2008. V. 4 (4). https://doi.org/10.5070/P719j8j0b6
  • Lee G. Variability in voice fundamental frequency of sustained vowels in speakers with sensorineural hearing loss. Journal of Voice. 2012. V. 26 (1). P. 24–29. https://doi.org/10.1016/j.jvoice.2010.10.003
  • Lee S., Potamianos A., Narayanan S. Acoustics of children’s speech: Developmental changes of temporal and spectral parameters. The Journal of the Acoustical Society of America. 1999. V. 105 (3). P. 1455–1468. https://doi.org/10.1121/1.426686
  • Lee S., Yu J., Fang T., Lee G. Vocal fold nodules: a disorder of phonation organs or auditory feedback? Clinical Otolaryngology. 2019. V. 44 (6). P. 975–982. https://doi.org/10.1111/coa.13417
  • Letowski T., Frank T., Caravella J. Acoustical properties of speech produced in noise presented through supra-aural earphones. Ear and Hearing. 1993. V. 14 (5). P. 332–338. https://doi.org/10.1097/00003446-199310000-00004
  • Liberman A., Mattingly I. The motor theory of speech perception revised. Cognition. 1985. V. 21. P. 1–36. https://doi.org/10.1016/0010-0277(85)90021-6
  • Lu Y., Cooke M. Speech production modifications produced by competing talkers, babble, and stationary noise. The Journal of the Acoustical Society of America. 2008. V. 124. P. 3261–3275. https://doi.org/10.1121/1.2990705
  • Lu Y., Cooke M. Speech production modifications produced in the presence of low-pass and high-pass filtered noise. The Journal of the Acoustical Society of America. 2009. V. 126. P. 1495–1499. https://doi.org/10.1121/1.2990705
  • Lu Y., Cooke M. The contribution of changes in F0 and spectral tilt to increased intelligibility of speech produced in noise. Speech Communication. 2009. V. 51. P. 1253–1262. https://doi.org/10.1016/j.specom.2009.07.002
  • Luo J., Hage S.R., Moss C.F. The Lombard effect: from acoustics to neural mechanisms. Trends in neurosciences. 2018. V. 41 (12). P. 938–949. https://doi.org/10.1016/j.tins.2018.07.011
  • Marcoux K., Ernestus M. Pitch in native and non-native Lombard speech. 19th International Congress of Phonetic Sciences. Australasian Speech Science and Technology Association Inc. 2019. P. 2605–2609.
  • Matsumoto S., Akagi M. Variation of Formant Amplitude and Frequencies in Vowel Spectrum uttered under Various Noisy Environments. http://hdl.handle.net/10119/15772.html
  • Meekings S., Evans S., Lavan N. Distinct neural systems recruited when speech production is modulated by different masking sounds. The Journal of the Acoustical Society of America. 2016. V. 140 (1). P. 8–19. https://doi.org/10.1121/1.4948587
  • Meekings S., Scott S.K. Error in the superior temporal gyrus? A systematic review and activation likelihood estimation meta-analysis of speech production studies. J. Cogn. Neurosci. 2021. V. 33 (3). P. 422–444. https://doi.org/10.1162/jocn_a_01661
  • Mermelstein P. Articulatory model for the study of speech production. The Journal of the Acoustical Society of America. 1973. V. 53 (4). P. 1070–1082. https://doi.org/10.1121/1.1913427
  • Nonaka S., Takahashi R., Enomoto K. Lombard reflex during PAG-induced vocalization in decerebrate cats. Journal of Neuroscience Research. 1997. V. 29 (4). P. 283–289. https://doi.org/10.1016/S0168-0102(97)00097-7
  • Patel R., Schell K.W. The Influence of Linguistic Content on the Lombard Effect. Journal of Speech, Language, and Hearing Research. 2008. V. 51. P. 209–220. https://doi.org/10.1044/1092-4388(2008/016)
  • Perkell J. Five decades of research in speech motor control: what have we learned, and where should we go from here? Journal of Speech, Language, and Hearing Research. 2013. V. 56 (6). P. 1857–1874. https://doi.org/10.1044/1092-4388(2013/12-0382)
  • Perkell J. Movement goals and feedback and feedforward control mechanisms in speech production. Journal of Neurolinguistics. 2012. V. 25. P. 382–407. https://doi.org/10.1016/j.jneuroling.2010.02.011
  • Perrier P., Ostry D., Laboissière R. The equilibrium point hypothesis and its application to speech motor control. Journal of Speech and Hearing Research. 1996. V. 39 (2). P. 365–378. https://doi.org/10.1044/jshr.3902.365
  • Pick H., Siegel G., Fox P., Garber S., Kearney J. Inhibiting the Lombard effect. The Journal of the Acoustical Society of America. 1989. V. 85 (2). P. 894–900. https://doi.org/10.1121/1.397561
  • Pittman A., Wiley T. Recognition of speech produced in noise. Journal of Speech, Language, and Hearing Research. 2001. V. 44 (3). P. 487–496. https://doi.org/10.1044/1092-4388(2001/038)
  • Schenk B., Baumgartner W., Hamzavi J. Effect of the loss of auditory feedback on segmental parameters of vowels of postlingually deafened speakers. Auris Nasus Larynx. 2003. V. 30 (4). P. 333–339. https://doi.org/10.1016/s0385-8146(03)00093-2
  • Schwartz J., Boë J., Vallée N., Abry C. The dispersion-focalization theory of vowel systems. Journal of Phonetics. 1997. V. 25. P. 255–286.
  • Selleck M., Sataloff R. The impact of the auditory system on phonation: a review. Journal of Voice. 2014. V. 28 (6). P. 688–693. https://doi.org/10.1016/j.jvoice.2014.03.018
  • Shen C., Cooke M., Janse E. Speaking in the presence of noise: Consistency of acoustic properties in clear-Lombard speech over time. The Journal of the Acoustical Society of America. 2023. V. 153 (4). P. 2165–2165. https://doi.org/10.1121/10.0017769
  • Siegel G., Pick H., Olsen M., Sawin L. Auditory feedback on the regulation of vocal intensity of preschool children. Developmental Psychology. 1976. V. 12 (3). P. 255. https://doi.org/10.1037/0012-1649.12.3.255
  • Šimko J., Beňuš Š., Vainio M. Hyperarticulation in Lombard speech: Global coordination of the jaw, lips and the tongue. The Journal of the Acoustical Society of America. 2016. V. 139 (1). P. 151–162. https://doi.org/10.1121/1.4939495
  • Smith B., Kenney M., Hussain S. A longitudinal investigation of duration and temporal variability in children’s speech production. The Journal of the Acoustical Society of America. 1996. V. 99 (4). P. 2344–2349. https://doi.org/10.1121/1.415421
  • Smith B., Sugarman M., Long S. Experimental manipulation of speaking rate for studying temporal variability in children’s speech. The Journal of the Acoustical Society of America. 1983. V. 74 (3). P. 744–749. https://doi.org/10.1121/1.389860
  • Stathopoulos E., Duchan J., Sonnenmeier R., Bruce N. Intonation and pausing in deaf speech. Folia Phoniat. 1986. V. 38 (1). P. 1–12. https://doi.org/10.1159/000265814
  • Stowe L., Golob E. Evidence that the Lombard effect is frequency-specific in humans. The Journal of the Acoustical Society of America. 2013. V. 134 (1). P. 640–647. https://doi.org/10.1121/1.4807645
  • Summers W., Pisoni D., Bernacki R., Pedlow R., Stokes M. Effects of noise on speech production: Acoustic and perceptual analyses. The Journal of the Acoustical Society of America. 1988. V. 84 (3). P. 917–928. https://doi.org/10.1121/1.396660
  • Svirsky M., Lane H., Perkell J., Wozniak J. Effects of shortterm auditory deprivation on speech production in adult cochlear implant users. Journal of the Acoustical Society of America. 1992. V. 92 (3). P. 1284–1300. https://doi.org/10.1121/1.403923
  • Szkiełkowska A., Myszel K. Acoustic voice parameters in hearing-impaired, school-aged children. Research study outcomes. Journal of Clinical Otorhinolaryngology. 2021. V. 3 (3). https://doi.org/10.31579/2692-9562/034
  • Tang P., Xu Rattanasone N., Yuen I., Demuth K. Phonetic enhancement of Mandarin vowels and tones: Infant-directed speech and Lombard speech. The Journal of the Acoustical Society of America. 2017. V. 142 (2). P. 493–503. https://doi.org/10.1121/1.4995998
  • Therrien A., Lyons J., Balasubramaniam R. Sensory attenuation of self-produced feedback: the lombard effect revisited. PLoS One. 2012. V. 7 (11). 11. P. 1–7. https://doi.org/10.1371/journal.pone.0049370
  • Tonkinson S. The Lombard effect in choral singing. Journal of Voice. 1994. V. 8 (1). P. 24–29. https://doi.org/10.1016/S0892-1997(05)80316-9
  • Tourville J., Guenther F. The DIVA model: a neural theory of speech acquisition and production. Language and cognitive processes. 2011. V. 26 (7). P. 952–981. https://doi.org/10.1080/01690960903498424
  • Tourville J., Reilly K., Guenther F. Neural mechanisms underlying auditory feedback control of speech. NeuroImage. 2007. V. 39 (3). P. 1429–1443. https://doi.org/10.1016/j.neuroimage.2007.09.054
  • Ubrig M., Tsuji R., Weber R., Menezes M., Barrichelo V., Cunha M., Tsuji D., Goffi-Gomez M. The influence of auditory feedback and vocal rehabilitation on prelingual hearing-impaired individuals post cochlear implant. Journal of Voice. 2018. V. 33 (6). P. 1–9. https://doi.org/10.1016/j.jvoice.2018.07.004
  • Vainio M., Aalto D., Suni A., Arnhold A., Raitio T., Seijo H., Järvikivi J., Alku P. Effect of noise type and level on focus related fundamental frequency changes. http://interspeech2012.org/accepted-abstract.html?id=952.html.
  • Van Ngo T., Kubo R., Morikawa D., Akagi M. Acoustical analyses of tendencies of intelligibility in Lombard speech with different background noise levels. Journal of Signal Processing. 2017. V. 21 (4). P. 171–174. https://doi.org/10.2299/jsp.21.171
  • Vance M., Stackhouse J., Wells B. Speech-production skills in children aged 3–7 years. International Journal of Language & Communication Disorders. 2005. V. 40 (1). P. 29–48. https://doi.org/10.1080/13682820410001716172
  • Villacorta V., Perkell J., Guenther F. Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception. Journal of the Acoustical Society of America. 2007. V. 122. P. 2306–2319. https://doi.org/10.1121/1.2773966
  • Voelker C. A preliminary strobophotoscopic study of the speech of the deaf. American Annals of the Deaf. 1935. V. 80. P. 243–259.
  • Wyke B. Laryngeal myotatic reflexes and phonation. Folia Phoniatr. 1974. V. 26 (4). P. 249–264. https://doi.org/10.1159/000263784
  • Zamani P., Bayat A., Saki N., Ataee E., Bagheripour H. Post-lingual deaf adult cochlear implant users’ speech and voice characteristics: cochlear implant turned-on versus turned-off. Acta Oto-Laryngologica. 2021. V. 141 (4). P. 367–373. https://doi.org/10.1080/00016489.2020.1866778
  • Zhao Y., Jurafsky D. The effect of lexical frequency and Lombard reflex on tone hyperarticulation. Journal of Phonetics. 2009. V. 37 (2). P. 231–247. https://doi.org/10.1016/j.wocn.2009.03.002
  • Zollinger S.A., Brumm H. The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour. 2011. V. 148 (11–13). P. 1173–1198. https://doi.org/10.1163/000579511X605759