• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Рsychoacoustic testing to assess the functional maturation of the central audiotory system

© 2023 I. V. Savenko, E. S. Garbaruk, M. Yu. Boboshko

Pavlov First St. Petersburg State Medical University 197022 St. Petersburg, L. Tolstogo st., 6–8, Russia
St. Petersburg State Pediatric Medical University 194100 St. Petersburg, Lithuanian st., 2, Russia

Received 12 May 2023

The age-appropriate development of the central auditory system is crucial for a child’s normal auditory and speech development. If there are any issues with this development, it can lead to central auditory processing disorders (APD) and problems with psychoverbal and general development. Psychoacoustic testing is an informative and accessible diagnostic tool for identifying signs of APD. This testing can be performed on children as young as four years old, provided there are normative data available for different age groups. The purpose of this study was to assess the functional state of the central auditory system using psychoacoustic methods in healthy children of different ages. Materials & Methods. We examined 125 healthy full-term children between the ages of 4 and 17 years who had normal peripheral hearing and no speech, language, cognitive, or academic problems. The children were divided into five age groups: 4–5 years 11 months, 6–7 years 11 months, 8–9 years 11 months, 10–11 years 11 months, and 12 years and older. In addition to traditional audiological examinations, all children underwent tests to assess the functional state of the central parts of the auditory system, including tests for the perception of rhythmic sequences of stimuli, Random Gap Detection Test, monaural low redundant speech testing in quiet and in noise, alternating binaural speech testing, dichotic digits test, and a simplified version of the Russian matrix sentence test in noise (RUMatrix). The results showed that the tests used were sensitive to the functional state of various structures of the central auditory system, and signs of maturation in the “bottom-up” direction were demonstrated as the children grew older. The rate of evolutionary processes varied depending on the age group of the subjects. It was also shown that the morphofunctional development of the central auditory system is not completed by adolescence. Conclusion. These findings can be used to differentiate between the immaturity of the central auditory system, APD, and speech-language disorders of different types in children of different ages. Overall, this study emphasizes the importance of early detection and intervention for any issues related to the central auditory system in children.

Key words: central auditory processing, children, maturation of the central auditory system, central auditory processing disorders, auditory temporal analysis, speech tests

DOI: 10.31857/S0235009223040078  EDN: JSLOKZ

Cite: Savenko I. V., Garbaruk E. S., Boboshko M. Yu. Psikhoakusticheskoe testirovanie dlya otsenki funktsionalnogo sozrevaniya tsentralnykh otdelov slukhovoi sistemy” [Рsychoacoustic testing to assess the functional maturation of the central audiotory system]. Sensornye sistemy [Sensory systems]. 2023. V. 37(4). P. 348–362 (in Russian). doi: 10.31857/S0235009223040078

References:

  • Boboshko M.Yu., Kalmykova I.V., Garbaruk E.S., Kibalova Yu.S., Savenko I.V. Sovremennye aspekty detskoi rechevoi audiomenrii [Modern approach in the children speech audiometry]. Sensornye sistemy [Sensory system]. 2010. V. 24 (4). P. 305–313 (in Russian).
  • Boboshko M.Yu. Rechevaya audiometriya. Uchebnoe posobie [Speech audiometry. Handbook]. SPb: Izd-vo SPbGMU [SPb: SPbSMU Press], 2012. 64 p. (in Russian).
  • Boboshko M.Yu., Salakhbekov M.A., Zhilinskaia E.V., Maltseva N.V., Savenko I.V., Totoljan N.A. Audiologicheskay ocenka sostoyniy centralnuch otdelov sluchovoi sestemy pri rasseynnom skleroze [Audiological assessment of the central auditory pathways in patients with multiple sclerosis]. Folia Otorhinolaryngol. et Pathologiae Respiratoriae. 2016. V. 22 (4). P. 56–67 (in Russian).
  • Boboshko M.Yu., Riekhakainen E.I. Rechevaya audiometriya v klinicheskoi praktike [Speech audiometry in clinical practice]. SPb.: Dialog, 2019. 80 p. (In Russian).
  • Boboshko M.Yu., Savenko I.V., Garbaruk E.S., Zhuravskii S.G., Mal’tseva N.V., Berdnikova I.P. Prakticheskaya surdologiya [Practical audiology]. SPb: Dialog, 2021. 420 p. (in Russian).
  • Vaitulevich S.F., Petropavlovskaya E.A., Shestopalova L.B., Nikitina N.I. Funkcionalinay mezpoluscharnay asimmetriy mozga cheloveka i sluchovay funkciy [Functional hemispheric asymmetry of the human brain in audition]. Fiziologiy cheloveka [Human Physiology]. 2019. V. 45 (2). P. 103–114. https://doi.org/10.1134/S0131164619020127 (in Russian).
  • Vygotskii L.S. Myshlenie i rech'. Izd. 5, ispr. [Thinking and speech. Rev. 5th ed.]. M.: Labirint, 1999. 352 p. (in Russian).
  • Garbaruk E.S., Goykhburg M.V., Warzybok A., Tavartkiladze G.A., Pavlov P.V., Kollmeier B. Primenenie russkoyzuchnoi versii matriksnogo frazovogo testa u detei [Application of the matrix sentence test Russian version in children]. Vestnik otorinolaringologii [Bulletin of Otorhinolaryngology]. 2020. V. 85 (1): 34–39. https://doi.org/10.17116/otorino20208501134 (in Russian).
  • Kovyazina M.S. Neiropsikhologicheskii analiz patologii mozolistogo tela. [Neuropsychological analysis of the corpus callosum pathology]. 2nd ed. M.: Genezis, 2016. 176 p. (in Russian).
  • Kuks E.N., Ryndina A.M., Ismagulova F.Sh., Lapina V.M. Test chereduyushcheisya rechi v otsenke tsentral’nykh narushenii slukhovoi sistemy [Binaural fusion test in the assessment of central auditory system disorders]. Vestnik Otorinolaringologii [Bulletin of Otorhinolaryngology]. 1988. N. 6. P. 10–13. (in Russian).
  • Lopotko A.I. Sensibilizirovannaya rechevaya audiometriya. Posobie dlya vrachei [Sensitized speech audiometry. Manual for doctors]. SPb: SPbGMU [SPb: SPbSMU Press], 1999. 44 p. (in Russian).
  • Ogorodnikova E.A., Stoliarova E.I., Baliakova A.A. Osobennosti sluchorechevoi segmentacii u detei schkolynogo vozrasta s normalynum sluchom i naruscheniymi slucha i rechi [Auditory segmentation in schoolchildren with normal hearing and with hearing and speech impairments]. Sensornye sistemy [Sensory system]. 2012. V. 26 (1): 20–31 (in Russian).
  • Savenko I.V. Antenatalynui ontogenez sluchovoi sistemy i ee disfunkciy u detei, rodivschichsy nedonoschennumi [Antenatal ontogenesis of the auditory system and its dysfunction in children born preterm (literature review)]. Folia Otorhinolaryngol. et Pathologiae Respiratoriae. 2015. V. 21 (4). P. 23–33 (in Russian).
  • Semenovich A.V. Neiropsikhologicheskaya korrektsiya v detskom vozraste. Metod zameshchayushchego ontogeneza. [Neuropsychological correction in childhood. The method of replacement ontogenesis. Manual. 9th ed.]. M.: Genezis, 2017. 474 p. (in Russian).
  • Chutko L.S., Eletskaya O.V. Rechevye narusheniya u detei [Speech disorders in children]. M., 2019. 448 p. (in Russian).
  • Bellis T.J. Assessment and management of central auditory processing disorders in the education: from science to practice. 2nd. ed. Clifton Park, NY: Thomson Delmar Learning, 2003. 552 p.
  • Bouyssi-Kobar M., Brossard-Racine M, Jacobs M., Murnick J., Chang T., Limperopoulos C. Regional microstructural organization of the cerebral cortex is affected by preterm birth. Neuroimage Clin. 2018. V. 18. P. 871–880. https://doi.org/10.1016/j.nicl.2018.03.020
  • Buss E., Porter H. L., Hall J.W., Grose, J.H. Gap detection in school-age children and adults: center frequency and ramp duration. Journal of Speech, Language, and Hearing Research. 2017. V. 60 (1). P. 172–181. https://doi.org/10.1044/2016_JSLHR-H-16-0010
  • Cone B., Whitaker R. Dynamics of infant cortical auditory evoked potentials (CAEPs) for tone and speech tokens. Int. J. Pediatr. Otorhinolaryngol. 2013. V. 77 (7). P. 1162–1173. https://doi.org/10.1016/j.ijporl.2013.04.030
  • Dias K.Z., Jutras B., Acrani I.O., Pereira L.D. Random Gap Detection Test (RGDT) performance of individuals with central auditory processing disorders from 5 to 25 years of age. Int. J. Pediatr. Otorhinolaryngol. 2012. V. 76 (2). P. 174–178. https://doi.org/10.1016/j.ijporl.2011.10.022
  • Dole M., Hoen M., Meunier F. Effect of contralateral noise on energetic and informational masking on speech-inspeech intelligibility. Proc. INTERSPEECH 2009, 10th Ann. Conf. Intern. Speech Communic. Assoc., Brighton, United Kingdom, September 6–10, 2009. https://doi.org/10.21437/Interspeech.2009-51
  • Eggermont J.J., Moore J.K. Morphological and functional development of the auditory nervous system. Human auditory development. Werner L.A., Fay R.R., Popper A.N., Eds. Springer Science+Business Media, LLC, 2012. 284 p.
  • Firszt J.B., Ulmer J.L., Gaggl W. Differential representation of speech sounds in the human cerebral hemispheres. Anat. Rec. A Discov Mol. Cell Evol. Biol. 2006. V. 288 (4). P. 345–357. https://doi.org/10.1002/ar.a.20295
  • Graven S.N., Browne J.V. Auditory development in the fetus and infant. Newborn Infant Nurs. Rev. 2008. V. 8 (4). P. 187–193. https://doi.org/10.1053/j.nainr.2008.10.010
  • Güntürkün O., Ströckens F., Ocklenburg S. Brain lateralization: a comparative perspective. Physiol. Rev. 2020. V. 100 (3). P. 1019–1063. https://doi.org/10.1152/physrev.00006.2019
  • Gutschalk A., Steinmann I. Stimulus dependence of contralateral dominance in human auditory cortex. Hum. Brain Mapp. 2015. V. 36 (3). P. 883–896. https://doi.org/10.1002/hbm.22673
  • Hugdahl K., Westerhausen R., Alho K., Medvedev S., Hämäläinen H. The effect of stimulus intensity on the right ear advantage in dichotic listening. Neurosci. Lett. 2008. V. 431 (1). P. 90–94. https://doi.org/10.1016/j.neulet.2007.11.046
  • Inagaki M., Tomita Y., Takashima S., Ohtani K., Andoh G., Takeshita K. Functional and morphometrical maturation of the brainstem auditory pathway. Brain Dev. 1987. V. 9 (6). P. 597–601. https://doi.org/10.1016/s0387-7604(87)80092-x
  • Isiklar S., Ozdemir S.T., Ozkaya G., Ozpar R. Three dimensional development and asymmetry of the corpus callosum in the 0–18 age group: A retrospective magnetic resonance imaging study. Clin Anat. 2023. V. 36 (4). P. 581–598. https://doi.org/10.1002/ca.23996
  • Kaga K. (Ed.). ABRs and electrically evoked ABRs in children (Part of the book series: Modern Otology and Neurotology). Tokyo: Springer Japan, 2022. 266 p. https://doi.org/10.1007/978-4-431-54189-9
  • Kawase T., Maki A., Kanno A., Nakasato N., Sato M., Kobayashi T. Contralateral white noise attenuates 40-Hz auditory steady-state fields but not N100m in auditory evoked fields. Neuroimage. 2012. V. 59 (2). P. 1037–1042. https://doi.org/10.1016/j.neuroimage.2011.08.108
  • Keith R.W. Random Gap Detection Test, Auditec, St Louis (MO), 2002.
  • Kelly A. Normative data for behavioural tests of auditory processing for New Zealand school children aged 7 to 12 years. The Australian and New Zealand journal of audiology. 2007. V. 29 (1). P. 60–64. https://doi.org/10.1375/audi.29.1.60
  • Krizman J., Tierney A., Fitzroy A.B., Skoe E., Amar J., Kraus N. Continued maturation of auditory brainstem function during adolescence: A longitudinal approach. Clin. Neurophysiol. 2015. V. 126 (12). P. 2348–2355. https://doi.org/10.1016/j.clinph.2015.01.026
  • Lebel C., Beaulieu C. Longitudinal development of human brain wiring continues from childhood into adulthood. J. Neurosci. 2011. V. 31 (30). P. 10937–10947. https://doi.org/10.1523/JNEUROSCI.5302-10.2011
  • Lebel C., Deoni S. The development of brain white matter microstructure. Neuroimage. 2018. V. 182. P. 207–218. https://doi.org/10.1016/j.neuroimage.2017.12.097
  • Lewandowska M., Milner R., Ganc M., Włodarczyk E., Dołżycka J., Skarżyński H. Development of central auditory processes in Polish children and adolescents at the age from 7 to 16 years. Current Psychology. 2023. V. 42 (5). P. 1789–1806. https://doi.org/10.1007/s12144-021-01540-x
  • Litovsky R. Development of the auditory system. Handbook of Clinical Neurology. The Human Auditory System. Eds G.G. Celesia and G. Hickok. 2015. P. 55–72. https://doi.org/10.1016/B978-0-444-62630-1.00003-2
  • Mattsson T.S., Follestad T., Andersson S., Lind O., Øygarden J., Nordgård S. Normative data for diagnosing auditory processing disorder in Norwegian children aged 7-12 years. Int. J. Audiol. 2018. V. 57 (1). P. 10–20. https://doi.org/10.1080/14992027.2017.1366670
  • McDermott E.E., Smart J.L., Boiano J.A., Bragg L.E., Colon T.N., Hanson E.M., Emanuel D.C., Kelly A.S. Assessing auditory processing abilities in typically developing school-aged children. J. Am. Acad. Audiol. 2016. V. 27 (2). P. 72–84. https://doi.org/10.3766/jaaa.14050
  • Moore J.K., Linthicum Jr. F.H. The human auditory system: A timeline of development. Int. J. Audiol. 2007. V. 46 (9). P. 460–478. https://doi.org/10.1080/14992020701383019
  • Musiek F.E. Auditory neuroscience and diagnosis. In: Musiek F.E., Chermak G.D. Handbook of central auditory processing disorder. 2nd ed V.1. San Diego: Plural Publishing, 2014. 745 p.
  • Musiek F.E., Chermak G.D. Psychophysical and behavioral peripheral and central auditory tests. In: Handbook of Clinical Neurology. The Human Auditory System. G.G. Celesia and G. Hickok (Eds). Elsevier B.V., 2015. P. 313–332. https://doi.org/10.1016/B978-0-444-62630-1.00018-4
  • Neijenhuis K., Snik A., Priester G., van Kordenoordt S., van den Broek P. Age effects and normative data on a Dutch test battery for auditory processing disorders. Int. J. Audiol. 2002. V. 41 (6). P. 334–346. https://doi.org/10.3109/14992020209090408
  • Ouyang M., Kang H., Detre J.A., Roberts T.P.L., Huang H. Short-range connections in the developmental connectome during typical and atypical brain maturation. Neurosci Biobehav. Rev. 2017. V. 83. P. 109–122. https://doi.org/10.1016/j.neubiorev.2017.10.007
  • Parviainen T., Helenius P., Salmelin R. Children show hemispheric differences in the basic auditory response properties. Hum. Brain Mapp. 2019. V. 40 (9). P. 2699–2710. https://doi.org/10.1002/hbm.24553
  • Quinones J.F., Pavan T., Liu X., Thiel C.M., Heep A., Hildebrandt A. Fiber tracing and microstructural characterization among audiovisual integration brain regions in neonates compared with young adults. Neuroimage. 2022. V. 254. Article No. 119141. https://doi.org/10.1016/j.neuroimage.2022.119141
  • Rahimi V., Mohamadkhani G., Alaghband-Rad J., Kermani F.R., Nikfarjad H., Marofizade S. Modulation of temporal resolution and speech long-latency auditoryevoked potentials by transcranial direct current stimulation in children and adolescents with dyslexia. Exp. Brain Res. 2019. V. 237 (3). P 873–882. https://doi.org/10.1007/s00221-019-05471-9
  • Scaioli V., Brinciotti M., Di Capua M., Lori S., Janes A., Pastorino G., Peruzzi C., Sergi P., Suppiej A. A multicentre database for normative brainstem auditory evoked potentials (BAEPs) in children: methodology for data collection and evaluation. Open Neurol. J. 2009. N. 3. P. 72–84. https://doi.org/10.2174/1874205X00903010072
  • Schochat E., Musiek F.E. Maturation of outcomes of behavioral and electrophysiologic tests of central auditory function. J. Commun. Disord. 2006. V. 39 (1). P. 78–92. https://doi.org/10.1016/j.jcomdis.2005.10.001
  • Sharma M., Purdy S.C., Humburg P. Cluster analyses reveals subgroups of children with suspected auditory processing disorders. Front. Psychol. 2019. V. 10. Article No. 2481. https://doi.org/10.3389/fpsyg.2019.02481
  • Sharma M., Purdy S.C., Kelly A.S. Comorbidity of auditory processing, language, and reading disorders. J. Speech Lang. Hear Res. 2009. V. 52 (3). P. 706–722. https://doi.org/10.1044/1092-4388(2008/07-0226)
  • Skoe E., Krizman J., Anderson S., Kraus N. Stability and plasticity of auditory brainstem function across the lifespan. Cereb. Cortex. 2015. V. 25 (6). P. 1415–1426. https://doi.org/10.1093/cercor/bht311
  • Snowling M.J., Gooch D., McArthur G., Hulme C. Language skills, but not frequency discrimination, predict reading skills in children at risk of dyslexia. Psychol. Sci. 2018. V. 29 (8). P. 1270–1282. https://doi.org/10.1177/0956797618763090
  • Thomason M.E., Brown J.A., Dassanayake M.T., Shastri R., Marusak H.A., Hernandez-Andrade E., Yeo L., Mody S., Berman S., Hassan S.S., Romero R. Intrinsic functional brain architecture derived from graph theoretical analysis in the human fetus. PLoS One. 2014. V. 9(5). Article No. e94423. https://doi.org/10.1371/journal.pone.0094423
  • Włodarczyk E.A., Szkiełkowska A., Skarżyński H., Miaśkiewicz B., Skarżyński P.H. Reference values for psychoacoustic tests on Polish school children 7–10 years old. PLoS One. 2019. V. 14 (8). Article No. e0221689. https://doi.org/10.1371/journal.pone.0221689
  • Yamazaki H., Easwar V., Polonenko M.J., Jiwani S., Wong D.D.E., Papsin B.C., Gordon K.A. Cortical hemispheric asymmetries are present at young ages and further develop into adolescence. Hum. Brain Mapp. 2018. V. 39 (2). P. 941–954. https://doi.org/10.1002/hbm.23893
  • Zwislocki J.J. A Theory of Central Auditory Masking and Its Partial Validation. J. Acoust. Soc. Am. 1972. V. 52 (2). P. 644–659. https://doi.org/10.1121/1.1913154