• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Functional investigations of the primary auditory cortex in the cat

© 2021 N. G. Bibikov

JSC N.N. Andreyev Acoustical Institute, 117036 Moscow, Schvernik st. 4, Russia
A.A. Kharkevich Institute for Information Transmission Problems RAS 127051 Moscow, Bolshoy Karetnyy Pereulok, 19, Russia

Received 05 Nov 2020

Electrophysiological studies of responses to sound stimuli of neurons in the cat’s primary auditory cortex are analyzed. For more than half a century, this area has been a favorite subject of research for both morphologists and specialists in the field of sensory physiology. Some early electrophysiological studies revealed high specificity of the neuronal responses to some specific sounds. However, in further studies, usually performed on anesthetized animals, the primary attention was paid to the cortex’s tonotopic organization and the identification of other neuronal response features determined by this cortical zone’s topography. In narcotized ani mals, the response of neurons of the primary cortex to sound, as a rule, appeared only at the moment of the beginning of the signal and has only a feeble ability to reproduce rapid temporal changes. The comparison of the data obtained in different laboratories reveals the essential role of the general state of the object during the registration of the cortex’s impulse activity. In recent years, when significant results were obtained on the auditory cortex neurons of awake rodents and primates, an apparent deficiency of such data was revealed precisely for such a seemingly studied object as the cat’s cortex’s primary zone.

Key words: primary auditory cortex, cat, coding of features, anesthesia, communication signals

DOI: 10.31857/S0235009221020037

Cite: Bibikov N. G. Funktsionalnoe issledovanie pervichnoi slukhovoi kory koshki [Functional investigations of the primary auditory cortex in the cat]. Sensornye sistemy [Sensory systems]. 2021. V. 35(2). P. 103-134 (in Russian). doi: 10.31857/S0235009221020037

References:

  • Al’tman Ia.A. Reactions of cat auditory cortex neurons to acoustic signals with interaural differences in stimuli. Fiziol Zh SSSR im I.M. Sechenova. 1972. V. 58 (1). P. 9–16 (in Russian).
  • Al’tman Ia.A. Nikitin N.I. Inhibitory processes in the responses of neurons in the auditory cortex of a cat during dichotic stimulation. J. Evol. Biochem. Fiziol. 1985. V. 21. P. 463–469 (in Russian).
  • Bakhtin G.A., Bibikov N.G. Changes in sensitivity to interruption of the acoustic signal in the process of adaptation of the auditory system of the frog. Acoustic Zh. 1974. V. 19 (4). P. 614–616 (in Russian).
  • Bibikov N.G. Cross-correlation analysis of auditory neuron activity in response to acoustic clicks. Biofizika. 1981. V. 26 (2). P. 339–345 (in Russian).
  • Bibikov N.G., Samson F., Imig. T. Funktsii riska i funktsii ozhidaemoi plotnosti impul'satsii neironov kokhlearnogo yadra koshki [Risk functions and expected spike density functions for neurons in the cat cochlear nucleus]. Ross. fiziol. zhurn. im. I.M. Sechenova [Russian journal of physiology]. 2003. V. 89 (6). P. 682–699 [in Russian]
  • Bibikov N.G. The relative significance of signal amplitude and rate of its change for spike generation in amphibian medullary auditory neurons. J. Evol. Bioch. Physiol. 2020. V. 56 (1). P. 63–74. https://doi.org/10.1134/s0022093020010081
  • Volkov I.O., Dembnovetskii O.F. Receptive fields of auditory cortical neurons in the cat. Neurophysiology. 1982. V. 13 (5). P. 328–333 (in Russian).
  • Volkov I.O., Galazyuk A.V. Responses of auditory cortex neurons in unanesthetized cats to best-frequency tones. Neurophysiology. 1986. V. 17 (4). P. 360–367. https://doi.org/10.1007/bf01052348
  • Nikitin N.I., Varfolomeev A.L., Kotelenko L.M. Reaktsiya neironov pervichnoi slukhovoi kory na dvizhushchiisya stimul s dinamicheski izmenyayushcheisya mezhushnoi zaderzhkoi [Responses of neurons in the primary auditory cortex of the cat to the auditory motion stimuli with variable interaural delay]. Ross. fiziol. zhurn. im. I.M. Sechenova [Russian journal of physiology]. 2003. V. 89 (6). P. 625–638. [in Russian]
  • Serkov F.N. Neuronal and synaptic mechanisms of cortical inhibition. Neirofiziologiya. 1985. V. 16 (3). P. 313–319 (in Russian). https://doi.org/10.1007/bf01065384
  • Serkov F.N., Storozhuk V.M. Responses of neurons in the auditory cortex to sound stimuli. Neirofiziologiya. 1969. V. 1 (2). P. 113–120 (in Russian).
  • Serkov F.N., Yanovskii E.S. Postsynaptic potentials of neurons of the cat auditory cortex. Neurophysiology 1971. V. 3. P. 251–259. https://doi.org/10.1007/BF01065273
  • Serkov F.N., Yanovskii E.Sh., Tal’nov A.N. Effect of pentobarbital, chloralose, and urethane on inhibitory postsynaptic potentials of cortical neurons. Neirofiziologiya. 1974. V. 5 (4). P. 339–346 (in Russian).
  • Sil’kis I.G., Rapoport S.Sh. Plastic reorganizations of the receptive fields of neurons of the auditory cortex and the medial geniculate body induced by microstimulation of the auditory cortex. Neurosci Behav Physiol. 1995. V. 25 (4) P. 322–339. https://doi.org/10.1007/BF02360045. PMID: 8570040
  • Abeles M., Goldstein M.H. Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J. Neurophysiol. 1970. V. 33. P. 172–187.
  • Aertsen A.M.H.J., Johannesma P.I.M. Spectro-temporal receptive fields of auditory neurons in the grassfrog. Biological Cybernetics. 1980. V. 38 (4). P. 223–234. https://doi.org/10.1007/bf00337015
  • Atencio C.A., Schreiner C.E. Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons. J. Neurosci. 2008. V. 28. P. 3897–3910.
  • Atencio C.A., Schreiner C.E. Laminar diversity of dynamic sound processing in cat primary auditory cortex. J. Neurophysiol. 2010a. V. 103. P. 192–205.
  • Atencio C.A., Schreiner C.E. Columnar connectivity and laminar processing in cat primary auditory cortex. PLoS One. 2010b. V. 5: e9521. https://doi.org/10.1371/journal.pone.0009521
  • Atencio C.A., Schreiner C.E. Spectrotemporal processing in spectral tuning modules of cat primary auditory cortex. PLoS One. 2012. V. 7 (2). e31537. https://doi.org/10.1371/journal.pone.0031537
  • Atencio C.A., Schreiner C.E. Functional congruity in local auditory cortical microcircuits. Neurosci. 2016. V. 316. P. 402–419. https://doi.org/10.1016/j.neuroscience.2015.12.057
  • Atencio C.A., Sharpee T.O., Schreiner C.E. Hierarchical computation in the canonical auditory cortical circuit. Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 21894–2189.
  • Atencio C.A., Sharpee T.O. Multidimensional receptive field processing by cat primary auditory cortical neurons. Neurosci. 2017. V. 359. P. 130–141. https://doi.org/10.1016/j.neuroscience.2017.07.003
  • Bar-Yosef O., Rotman Y., Nelken I. Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral contex. J. Neurosci. 2002. V. 22 (19). P. 8619–8632.
  • Bonham B.H., Cheung S.W., Godey B., Schreiner C.E. Spatial organization of frequency response areas and rate/level functions in the developing AI. J. Neurophysiol. 2004. V. 91 (2). P. 841–854. https://doi.org/10.1152/jn.00017.2003
  • Britvina T., Eggermont J.J. Spectrotemporal receptive fields during spindling and non-spindling epochs in cat primary auditory cortex. Neurosci. 2008. V. 154 (4). P. 1576–1588.
  • Brosch M., Schreiner C.E. Time course of masking curves in cat primary auditory cortex. J. Neurophysiol. 1997. V. 77. P. 923–943.
  • Brosch M., Schreiner C. E. Sequence sensitivity of neurons in cat primary auditory cortex. Cerebral Cortex. 2000. V. 10 (12). P. 1155–1167. https://doi.org/10.1093/cercor/10.12.1155
  • Brugge J.F., Dubrovsky N.A., Aitkin L.M., Anderson D.J. Sensitivity of single neurons in the auditory cortex of cat to binaural stimulation: effects of varying interaural time and intensity. J. Neurophysiol. 1969. V. 32. P. 1005–1024.
  • Brugge J.F., Reale R.A., Hind J.E., Chan J.C., Musicant A.D., Poon P.W. Simulation of free-field sound sources and its application to studies ofcortical mechanisms of sound localization in the cat. Hear. Res. 1994. V. 73. P. 67–84.
  • Brugge J.F., Reale R.A., Hind J.E. The structure of spatial receptive fields of neurons in primary auditory cortex of the cat. J. Neurosci. 1996. V. 16 (14). P. 4420–4437.
  • Butler B.E., Hall A.J., Lomber S.G. High-field functional imaging of pitch processing in auditory cortex of the cat. PLoS One. 2015. V. 10 (7). e0134362. https://doi.org/10.1371/journal.pone.0134362
  • Calford M.B., Semple M.N. Monaural inhibition in cat auditory cortex. J Neurophysiol. 1995. V. 73. P. 1876–1891.
  • Carrasco A., Lomber S.G. Neuronal activation times to simple, complex, and natural sounds in cat primary and non-primary auditory cortex. J. Neurophysiol. 2011. V. 106. P. 1166–1178.
  • Cheung S.W., Nagarajan S.S., Bedenbaugh P.H., Schreiner C.E., Wang X., Wong A. Auditory cortical neuron differences under isoflurane versus pentobarbital anesthesia. Hear. Res. 2001. V. 156. P. 115–127.
  • Chimoto S., Kitama T., Qin L., Sakayori S., Sato Y. Tonal response patterns of primary auditory cortex neurons in alert cats. Brain Res. 2002. V. 934 (1). P. 34–42. https://doi.org/10.1016/s0006-8993(02)02316
  • De Boer E. On cochlear encoding: Potentialities and limitations of the reverse-correlation technique. J. Acoust. Soc. Amer. 1978. V. 63 (1) P. 115–135. https://doi.org/10.1121/1.381704
  • Dinse H.R., Godde B., Hilger T., Reuter G., Cords S.M., Lenarz T., Von Seelen W. Optical imaging of cat auditory cortex cochleotopicselectivity evoked by acute electrical stimulation of a multi-channel cochlear implant. Eur. J. Neurosci. 1997. V. 9. P. 113–119.
  • Dong C., Qin L., Liu Y., Zhang X., Sato Y. Neuralresponses in the primary auditory cortex of freely behaving cats while discriminating fast and slow click-trains. PLoS One. 2011. V. 6v(10). e25895. https://doi.org/10.1371/journal.pone.0025895
  • Eggermont J.J. Rate and synchronization measures of periodicity coding in cat primary auditory cortex. Hear. Res. 1991. V. 56. P. 153–167.
  • Eggermont J.J. Stimulus induced and spontaneous rhythmic firing of single units in cat primary auditory cortex. Hear. Res. 1992. V. 61 (1–2). P. 1–11. https://doi.org/10.1016/0378-5955(92)90029
  • Eggermont J.J. Temporal modulation transfer functions for AM and FM stimuli in cat auditory cortex. Effects of carrier type, modulating waveform and intensity. Hear. Res. 1994. V. 74 (1–2). P. 51–66. https://doi.org/10.1016/0378-5955(94)90175-9
  • Eggermont J.J. Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. J. Neurophysiol. 1998. V. 80 (5). P. 2743–2764. https://doi.org/10.1152/jn.1998.80.5.2743
  • Eggermont J.J. Neural correlates of gap detection in three auditory cortical fields in the cat. J. Neurophysiol. 1999. V. 81. P. 2570–2581.
  • Eggermont J.J. Neural responses in primary auditory cortex mimic psychophysical, across-frequency-channel, gap-detectionthresholds. J. Neurophysiol. 2000. V. 84. P. 1453–1463.
  • Eggermont J.J. Temporal modulation transfer functions in cat primary auditorycortex: separating stimulus effects from neural mechanisms. J. Neurophysiol. 2002. V. 87. P. 305–321.
  • Eggermont J.J. Context dependence of spectro-temporal receptive fields with implications for neural coding. Hear. Res. 2011. V. 271. P. 123–132.
  • ggermont J.J., Komiya H. Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear. Res. 2000. V. 142. P. 89–101.
  • Eisenman L. Neural encoding of sound location: an electrophysiological study in auditory cortex (AI) of the catusing free field stimuli. Brain Res. 1974. V. 75. P. 203–214.
  • Evans E., Whitfield I. Classification of unit responses in the auditory cortex of the unanaesthetized and unrestrained cat. J. Physiol. 1964. V. 171. P. 476–793.
  • Fallon J.B., Shepherd R.K., Irvine D.R.F. Effects of chronic cochlear electrical timulation after an extended period of profound deafness on primary auditory cortex organization in cats. Europ. J. Neurosci. 2013. V. 39 (5). P. 811–820. https://doi.org/10.1111/ejn.12445
  • Fallon J.B., Shepherd R.K., Nayagam D.A.X., Wise A.K., Heffer L.F., Landry T.G., Irvine D.R.F. Effects of deafness and cochlear implant use on temporal response characteristics in cat primary auditory cortex. Hear. Res. 2014. V. 315. P. 1–9. https://doi.org/10.1016/j.heares.2014.06.001
  • Fishbach A., Nelken I., YeshurunY. Auditoryedge detection: a neural model for physiological and psychoacousticalresponses to amplitude transients. J. Neurophysiol. 2001. V. 85. P. 2303–2323.
  • Gerstein G.L., Kiang N.Y. Responses of single units in the auditory cortex. Experimental Neurology. 1964. V. 10 (1). P. 1–18. https://doi.org/10.1016/0014-4886(64)90083-4
  • Goldstein M.H., Hall II J.L., Butterfield B.O. Single unit activity in the primary auditory cortex of unanesthetized cats. J. Acoust. Soc. Amer. 1968. V. 43. P. 444–455.
  • Gehr D.D., Komiya H., Eggermont J.J. Neuronal responses in cat primaryauditory cortex to natural and altered species-specific calls. Hear. Res. 2000. V. 150. P. 27–42.
  • Gourevitch B., Eggermont J.J. Spatial representation of neural responses to natural and altered conspecific vocalizations in cat auditory cortex. J. Neurophysiol. 2007. V. 97. P. 144–158.
  • Gourévitch B., Eggermont J.J. Spectrotemporal sound density dependent long-term adaptation in cat primary auditory cortex. Eur. J. Neurosci. 2008. V. 27. P. 3310–3321.
  • Gourévitch B., Noreña A., Shaw G., Eggermont J.J. Spectrotemporal receptive fields in anesthetized cat primary auditory cortex are context dependent. Cerebral Cortex. 2009. V. 19 (6). P. 1448–1461. https://doi.org/10.1093/cercor/bhn184
  • Hall J.L., Goldstein M.H. Representation of binaural stimuli by single units in primary auditory cortex of unanesthetized cats. J. Acoust. Soc. Amer. 1968. V. 43 (3). P. 456–461. https://doi.org/10.1121/1
  • Hall A.J., Lomber S.G. High-field fMRI reveals tonotopically-organized and core auditory cortex in the cat. Hear. Res. 2015. V. 325. P. 1–11.
  • Harper N.S., Schoppe O., Willmore B.D., Cui Z., Schnupp J.W., King A.J. Networkreceptive field modeling reveals extensive integration and multifeature selectivity in auditory cortical neurons. PLoS Comput. Biol. 2016. V. 12. e1005113.
  • He J., Hashikawa T., Ojima H., Kinouchi Y. Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J. Neurosci. 1997. V. 17 (7). P. 2615–2625.
  • Heil P. Auditory cortical onset responses revisited. I. Firstspiketiming. J. Neurophysiol. 1997. V. 77. P. 2616–2641.
  • Heil P., Rajan R., Irvine D.R. Topographic representation of tone intensity along the isofrequency axis of cat primary auditory cortex. Hear. Res. 1994. V. 76. P. 188–202.
  • Hind J.E. An electrophysiological determination oftonotopic organization in auditory cortex of cat. J. Neurophysiol. 1953. V. 16. P. 473–489.
  • Hubel D.H., Henson C.O., Rupert A., Galambos R. Attention units in the auditory cortex. Science. 1959. V. 129. P. 1279–1280.
  • Imaizumi K., Priebe N.J., Sharpee T.O., Cheung S.W., Schreiner C.E. Encoding of temporal information by timing, rate, and place in cat auditory cortex; PLoS One. 2010. V. 5. (e11531).
  • Jenkins W.M., Merzenich M.M. Role of cat primary auditory cortex for sound-localization behavior. J. Neurophysiol. 1984. V. 52 (5). P. 819–847.
  • Imig T.J., Brugge, J.F. Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat. J. Comp. Neurol. 1978. V. 182 (4). P. 637–660.
  • Imig T.J., Reale R.A. Pattern of cortico-cortical connections related to tonotopic maps in cat auditory-cortex. J. Comp. Neurol. 1980. V. 192. P. 293–332.
  • Imig T.J., Irons W.A., Samson F.R. Single unit and sound pressure level of selectivity to azimuthal direction noise bursts in cat high-frequency primary auditory cortex. J. Neurophysiol. 1990. V. 63. P. 1448–1466.
  • Katsuki Y., Watanabe T., Maruyama N. Activity of auditory neurons in upper levels of brain of cat. J. Neurophysiol. 1959. V. 22 (4). P. 343–359.
  • Kenmochi M., Eggermont J.J. Autonomous cortical rhythms affect temporal modulation transfer functions. NeuroReport. 1997. V. 8 (7). P. 1589–1593. https://doi.org/10.1097/00001756-199705060-00008
  • Kim S., Manyam S.C., Warren D.J., Normann R.A Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays. Ann. Biomed. Eng. 2006. V. 34. P. 300–309. https://doi.org/10.1007/s10439-005-9037-9
  • Kok M.A., Stolzberg D., Brown T.A., Lomber S.G. Dissociable influences of primary auditory cortex and the posterior auditory field on neuronal responses in the dorsal zone of auditory cortex. J. Neurophysiol. 2015. V. 113 (2). P. 475–486. https://doi.org/10.1152/jn.00682.2014
  • Kok M.A., Lomber S.G. Origin of the thalamic projection to dorsal auditory cortex in hearing and deafness. Hear Res. 2017. V. 343. P. 108–117. https://doi.org/10.1016/j.heares.2016.05.013
  • Langner G., Dinse H.R., Godde B. A map of periodicity orthogonal to frequency representation in the cat auditory cortex. Frontiers in Integrative Neurosci. 2009. V. 3 Art. 27. https://doi.org/10.3389/neuro.07.027.2009
  • Lee C.C., Imaizumi K., Schreiner C.E., Winer J.A., Concurrent tonotopic processing streams in auditory cortex. Cereb. Cortex. 2004a. V. 14. P. 441–451.
  • Lee C.C., Schreiner C.E., Imaizumi K., Winer J.A. Tonotopic and heterotopic projection systems in physiologically defined auditory cortex. Neuroscience. 2004b. V. 128. P. 871–887.
  • Lee C.C., Winer J.A. Connections of cat auditory cortex: I. Thalamocortical system. J. Comp. Neurol. 2008. V. 507. P. 1879–1900.
  • Lee C.C., Winer J.A. Convergence of thalamic and cortical pathways in cat auditory cortex. Hear. Res. 2011. V. 274. P. 85–94.
  • Lu T., Wang X. Temporal discharge patterns evoked by rapid sequences of wide- and narrowband clicks in the primary auditory cortex of cat. J. Neurophysiol. 2000. V. 84. P. 236–246.
  • Ma H., Qin L., Dong C., Zhong R., Sato Y. Comparison of neural responses to cat meows and human vowels in the anterior and posterior auditory field of awake cats. PLoS One. 2013. V. 8(1). e52942. https://doi.org/10.1371/journal.pone.0052942
  • Mendelson J.R., Cynader M.S. Sensitivity of cat primary auditory cortex (Al) neurons to the direction and rate of frequency modulation. Brain Res. 1985. V. 327 (1–2). P. 331–335.
  • Mendelson J.R. Grasse K.L. A comparison of monaural and binaural responses to frequency modulated (FM) sweeps in cat primary auditorycortex. Exp. Brain Res. 1992. V. 91. P. 435–454.
  • Merzenich M.M., Knight P.L., Roth G.L. Representation of cochlea within primary auditory cortex in the cat. J. Neurophysiol. 1975. V. 38. P. 231–249.
  • Mickey B.J., Middlebrooks J.C. Responses of auditory cortical neurons to pairs of sounds: correlates of fusion and localization. J. Neurophysiol. 2001. V. 86. P. 1333–1350.
  • Mickey B.J., Middlebrooks J.C. Representation of auditory space by cortical neurons in awake cats. Neuroscience. 2003. V. 23. P. 8649–8663.
  • Mickey B.J., Middlebrooks J.C. Sensitivity of auditory cortical neurons to the locations of leading and lagging sounds. J. Neurophysiol. 2005. V. 94 (2). P. 979–989. https://doi.org/10.1152/jn.00580.2004
  • Middlebrooks J.C., Dykes R.W., Merzenich M.M., Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographic organization orthogonal to isofrequency contours. Brain Res. 1980. V. 181. P. 31–48.
  • Miller L.M., Escabí M.A., Read H.L., Schreiner C.E. Functional convergence of response properties in the auditory thalamocortical system. Neuron. 2001. V. 32. P. 151–160.
  • Moshitch D., Las L., Ulanovsky N., Bar-Yosef O., Nelken I. Responses of neurons in primary auditory cortex (A1) to pure tones in the halothane-anesthetized cat. J. Neurophysiol. 2006. V. 95. P. 3756–3769.
  • Moshitch D., Nelken I. The representation of interaural time differences in high-frequency auditory cortex. Cerebral Cortex. 2014. V. 26 (2). P. 656–668. https://doi.org/10.1093/cercor/bhu230
  • Nakamoto K.T., Zhang J., Kitzes L.M. Temporal nonlinearity during recovery from sequential inhibition by neurons in the cat primary auditory cortex. J. Neurophysiol. 2006. V. 95. P. 1897–1907.
  • Nelken I., Prut Y., Vaadia E., Abeles M. In search of the best stimulus: An optimization procedure for finding efficient stimuli in the cat auditory cortex. Hear. Res. 1994. V. 72. P. 237–253.
  • Nelken I., Rotman Y., Yosef O.B. Responses of auditorycortex neurons to structural features of natural sounds. Nature. 1999. V. 397 (6715). P. 154–157. https://doi.org/10.1038/16456
  • Norena A.J., Gourevitch B., Pienkowsky M., Shaw G., Eggermont J.J. Increasing spectrotemporal sound density reveals an octave-based organization in cat primary auditory cortex. J. Neurosci. 2008. V. 28 (36). P. 8885–8896. https://doi.org/10.1523/jneurosci.2693-08.2008
  • Osanai H., Tateno T. Neural response differences in the rat primary auditory cortex under anesthesia with ketamine versus the mixture of medetomidine, midazolam and butorphanol. Hear. Res. 2016. V. 339. P. 69–79.
  • Phillips D.P. Factors shaping the response latencies of neurons in the cat’s auditory cortex. Behav. Brain Res. 1998. V. 93. P. 33–41.
  • Phillips D.P., Cynader M.S. Some neural mechanisms in the cat’s auditory cortex underlying sensitivity to combined tone and wide-spectrum noise stimuli. Hear. Res. 1985. V. 18. P. 87–102.
  • Phillips D.P., Irvine D.R. Responses of single neurons in physiologically defined primary auditory cortex (AI) of the cat: frequency tuning and responses to intensity. J. Neurophysiol. 1981a. V. 45. P. 48–58.
  • Phillips D.P., Irvine D.R. Responses of single neurons in physiologically defined area AI of cat cerebral cortex: sensitivity to interaural intensity differences. Hear. Res. 1981b. V. 4. P. 299–307.
  • Phillips D.P., Hall S.E. Responses of single neurons in cat auditory cortex to time-varying stimuli: linear amplitude modulations. Exp. Brain Res. 1987. V. 67 (3). P. 479–492.
  • Phillips D.P., Hall S.E. Response timing constraints on the cortical representation of sound time structure. J. Acoust. Soc. Amer. 1990. V. 88 (3). P. 1403–1411.
  • Phillips D.P., Orman S.S., Musicant A.D., Wilson G.F. Neurons in the cat’s primary auditory cortex distinguished by their responses to tones and wide-spectrum noise. Hear. Res. 1985. V. 18 (1). P. 73–86.
  • Phillips D.P., Semple M.N., Calford M.B., Kitzes L.M. Level-dependent representation of stimulus frequency in cat primary auditory cortex. Exp. Brain Res. 1994. V. 102. P. 210–226.
  • Phillips D.P., Taylor T.L., Hall S.E., Carr M.M., Mossop J.E. Detection of silent intervals between noises activating different perceptual channels: Some properties of “central” auditory gap detection. J. Acoust. Soc. Amer. 1997. V. 101 (6) P. 3694–3705. https://doi.org/10.1121/1.419376
  • Pienkwoski M., Shaw G., Eggermont J.J. Wiener-Volterra characterization of neurons in primary auditory cortex using Poisson-distributed impulse train inputs. J. Neurophysiol. 2009. V. 101. P. 3031–3041.
  • Pienkowski M., Eggermont J.J. Sound frequency representation in primary auditory cortex is level tolerant for moderately loud, complex sounds. J. Neurophysiol. 2011. V. 106. P. 1016–1027.
  • Poirier P., Jiang H., Lepore F., Guillemot J.-P. Positional, directional and speed selectivities in the primary auditory cortex of the cat. Hear. Res. 1997. V. 113 (1–2). P. 1–13. https://doi.org/10.1016/s0378-5955(97)00126-3
  • Qin L., Kitama T., Chimoto S., Sakayori S., Sato Y. Time course of tonal frequency-response-area of primary auditory cortex neurons in alert cats. Neuroscience Research. 2003. V. 46 (2). P. 145–152. https://doi.org/10.1016/s0168-0102(03)00034-8
  • Qin L., Sakai M., Chimoto S., Sato Y. Interaction of excitatory and inhibitory frequency-receptive fields in determining fundamental frequency sensitivity of primary auditory cortex neurons in awake cats. Cerebral Cortex. 2004a. V. 15 (9). P. 1371–1383. https://doi.org/10.1093/cercor/bhi019
  • Qin L., Chimoto S., Sakai M., Sato Y. Spectral-shape preference of primary auditory cortex neurons in awake cats. Brain Research. 2004 b. V. 1024 (1–2). P. 167–175. https://doi.org/10.1016/j.brainres.2004.07.061
  • Qin L., Chimoto S., Sakai M., Wang J., Sato Y. Comparison between offsetand onset responses of primary auditory cortex ON-OFF neurons in awake cats. J. Neurophysiol. 2007. V. 97. P. 3421–3431.
  • Qin L., Wang J., Sato Y. Heterogeneous neuronal responses to frequencymodulated tones in the primary auditory cortex of awake cats. J. Neurophysiol. 2008a. V. 100. P. 1622–1634.
  • Qin L., Wang J., Sato Y. Representations of cat meows and human vowels in the primary auditory cortex of awake cats. J. Neurophysiol. 2008b. V. 99. P. 2305–2319.
  • Qin L., Liu Y., Wang J., Li S., Sato Y. Neural and behavioral discrimination of sound duration by cats J. Neurosci. 2009. V. 29 (50). P. 15650–15659.
  • Rajan R., Aitkin L.M., Irvine D.R. Azimuthal sensitivity of neurons in primary auditory cortex of cats. II. Organization along frequency-band strips. J. Neurophysiol. 1990. V. 64 (3). P. 888–902. https://doi.org/10.1152/jn.1990.64.3.888
  • Rajan R., Irvine D.R., Wise L.Z., Heil P. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J. Comp. Neurol. 1993. V. 338. P. 17–49.
  • Read H.L., Miller L.M., Schreiner C.E., Winer J.A. Two thalamic pathways to primary auditory cortex. Neuroscience. 2008. V. 152. P. 151–159.
  • Reale R.A., Imig T.J. Tonotopic organization in auditory cortex of the cat. J. Comp. Neurol. 1980. V. 192. P. 265–291.
  • Reale R.A., Brugge J.F. Directional sensitivity of neurons in the primary auditory (AI) cortex of the cat to successive sounds ordered in time and space. J. Neurophysiol. 2000. V. 84. P. 435–450.
  • Ribaupierre F., Goldstein M.H., Yeni-Komshian G. Intracellular study of the cat’s primary auditory cortex. Brain Research. 1972a. V. 48. P. 185–204. https://doi.org/10.1016/0006-8993(72)90178-3
  • Ribaupierre F., Goldstein M.H., Yeni-Komshian G. Cortical coding of repetitive acoustical pulses. Brain Research. 1972b. V. 48. P. 205–225.
  • Rouiller E.M., Simm G.M., Villa A.E.P., De Ribaupierre Y., De Ribaupierre F. Auditory corticocortical interconnections in the cat – evidence for parallel andhierarchical arrangement of the auditory cortical areas. Exp. Brain Res. 1991. V. 86. P. 483–505.
  • Sakai M., Chimoto S., Qin L., Sato Y. Differential representation of spectral and temporal information by primary auditory cortex neurons in awake cats: Relevance to auditory scene analysis. Brain Res. 2009. V. 1265. P. 80–92.
  • Schreiner C.E., Mendelson J.R., Sulter M.L. Functional topography of cat primary auditory cortex: representation of tone intensity. Exp. Brain Res. I992. V. 7. P. 105–127.
  • Schreiner C.E., Calhoun B.M Spectral envelope coding in cat primary auditory cortex: Properties of ripple transfer functions. Auditory Neuroscience. 1994. V. 1 (1). P. 39–61.
  • Schreiner C.E. Spatial distribution of responses to simple and complex sounds in the primary auditory cortex. Audiol. Neurootol. 1998. V. 3. P. 104–122.
  • Schreiner C.E., Mendelson J.R. Functional topography of cat primary auditory cortex: distribution of integrated excitation. J. Neurophysiol. 1990. V. 64. P. 1442–1459.
  • Schreiner C.E., Mendelson J., Raggio M.W., Brosch M., Krueger K. Temporal processing in cat primary auditory cortex. Acta Otolaryngol Suppl. 1997. V. 532. P. 54–60.
  • Schreiner C.E., Read H.L., Sutter M.L. Modular organization of frequency integration in primary auditory cortex. Annu. Rev. Neurosci. 2000.V. 23. P. 501–529.
  • Schreiner C.E., Sutter M.L. Topography of excitatory bandwidth in catprimary auditory cortex: single-neuron versus multiple-neuron recordings. J. Neurophysiol. 1992. V. 68. P. 1487–1502.
  • Schreiner C.E., Urbas J.V. Representation of amplitude modulation in the auditory cortex of the cat: comparison between cortical fields. Hear. Res. 1988. V. 32. P. 49–64.
  • Seki S., Eggermont J.J., Changes in cat primary auditory cortexafter minor-to-moderate pure-tone induced hearing loss. Hear. Res. 2002. V. 173. P. 172–186.
  • Sovijarvi A.R.A., Sainio K. Neuroleptanalgesia and the function of the auditory cortex in the cat. Anesthesiology. 1972. V. 37. P. 406–412.
  • Sovijarvi A.R.A. Detection of natural complex sounds by cells in the primary auditory cortex of the cat. Acta physiol. scand. 1975. V. 93. P. 318–335.
  • Stumpf E., Toronchuk J.M., Cynader M.S. Neurons in cat primary auditory cortex sensitive to correlates of auditory motion in three dimensional space. Exp. Brain Res. 1992. V. 88. P. 158–168.
  • Suga N., Tsuzuki K. Inhibition and leveltolerant frequency tuning in the auditory cortex of the mustached bat. J. Neurophysiol. 1985. V. 53. P. 1109–1145.
  • Sutter M.L., Schreiner C.E. Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex. J. Neurophysiol. 1991. V. 65. P. 1207–1226.
  • Sutter M.L., Schreiner C.E. Topography of intensity tuning in cat primary auditory cortex: single-neuron versus multiple-neuron recordings. J. Neurophysiol. 1995. V. 73. P. 190–204.
  • Sutter M.L., Schreiner C.E., McLean M., O’Connor K.N., Loftus, W.C. Organization of inhibitory frequency receptive fields in cat primary auditory cortex. J. Neurophysiol. 1999. V. 82 (5). P. 2358–2371. https://doi.org/10.1152/jn.1999.82.5.2358
  • Tan A.Y., Atencio C.A., Polley D.B., Merzenich M.M., Schreiner C.E., Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons. Neurosci. 2007. V. 146. P. 449–462.
  • Toronchuk J.M., Stumpf E., Cynader M.S. Auditory cortex neurons sensitive to correlates of auditory motion: underlying mechanisms. Exp. Brain Res. 1992. V. 88 (1) P. 169–180.
  • Volkov I.O., Galazyuk A.V. Responses of auditory cortex neurons in unanesthetized cats to best-frequency tones. Neurophysiology. 1986. V. 17 (4). P. 360–367. https://doi.org/10.1007/bf01052348
  • Volkov I.O., Galazyuk A.V. Formation of spike response to sound tones in cat auditory cortex neurons: Interaction of excitatory and inhibitory effects. Neurosci. 1991. V. 43 (2–3). P. 307–321.
  • Volkov I.O., Galazyuk A.V. Peculiarities of inhibition in cat auditory cortex neurons evoked by tonal stimuli of various durations. Exp. Brain Res. 1992. V. 91 (1). P. 115–120. https://doi.org/10.1007/bf00230019
  • Watanabe T., Katsuki Y. Response patterns of single auditory neurons of the cat to speciesspecific vocalization. Japan. J. Physiol. 1974. V. 24 (2). P. 135–155. https://doi.org/10.2170/jjphysiol.24.135
  • Wang X., Kadia S.C. Differential representation of speciesspecific primate vocalizations in the auditory cortices of marmoset and cat. J. Neurophysiol. 2001. V. 86. P. 2616–2620.
  • Wang X., Lu T., Bendor D., Bartlett E. Neural coding of temporal information in auditory thalamus and cortex. Neurosci. 2008. V. 154 (1). P. 294–303. https://doi.org/10.1016/j.neuroscience.2008.03.065
  • Wang J., Qin L., Chimoto S., Tazunoki S., Sato Y. Response characteristics of primary auditory cortex neurons underlying perceptual asymmetry of ramped and damped sounds. Neurosci. 2014. V. 256. P. 309–321. https://doi.org/10.1016/j.neuroscience.2013.10.042
  • Winer J.A. Decoding the auditory corticofugal systems. Hear. Res. 2006. V. 207. P. 1–9.
  • Winer J.A., Diamond I.T., Raczkowski D. Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate body and posterior thalamic nuclei. J. Comp. Neurol. 1977. V. 176. P. 387–418.
  • Winer J.A., Lee C.C. The distributed auditory cortex. Hear. Res. 2007. V. 229 (1–2). P. 3–13. https://doi.org/10.1016/j.heares.2007.01.017
  • Woody C.D., Zotova E., Gruen E.Multiple representations of information in the primary auditory cortex of cats. Brain Res. 2000. V. 868 (1). P. 56–65. https://doi.org/10.1016/s0006-8993(00)02276-9
  • Yuan K., Shih J.Y., Winer J.A., Schreiner C.E. Functional networks of parvalbumin-immunoreactive neurons in cat auditory cortex. J. Neurosci. 2011. 31 (37). P. 13333–13342. https://doi.org/10.1523/jneurosci.1000-11.2011
  • Zhang J., Nakamoto K.T., Kitzes L.M. Modulation of level response areas and stimulus selectivity of neurons in cat primary auditory cortex. J Neurophysiol. 2005. V. 94 (4). P. 2263–2274. https://doi.org/10.1152/jn.01207.2004
  • Zhang J., Nakamoto K.T., Kitzes L.M. Responses of neurons in the cat primary auditory cortex to sequential sounds. Neurosci. 2009. V. 161. P. 578–588.
  • Zhang X., Qin L., Liu Y., Dong C., Sato Y. Cat’s behavioral sensitivity and cortical spatiotemporal responses to the sweep direction of frequency-modulated tones. Behav. Brain. Res. 2011. V. 217. P. 315–325.
  • Zhang X., Yang P., Dong C., Sato Y., Qin L. Correlation between neural discharges in cat primary auditory cortex and tone-detection behaviors. Behav. Brain Res. 2012. V. 232 (1) P. 114–123. https://doi.org/10.1016/j.bbr.2012.03.025
  • Zotova E., Woody C.D., Gruen E. Multiple representations of information in the primary auditory cortex of cats: II. Stability and electrical microstimulation at coronalpericruciate cortex of cat with change in early (<32 ms) components of activity after conditioning classical conditioning of different facial movements. Brain Res. 2000. V. 868. P. 66–78.
  • Zurita P., Villa A.E., de Ribaupierre Y., de Ribaupierre F., Rouiller E.M. Changes of single unit activity in the cat’s auditory thalamus and cortex associated to different anesthetic conditions. Neurosci. Res. 1994. V. 19. P. 303–316.