• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Behavioral and neurophysiological characteristics of oblique orientations estimation in males and females

© 2020 E. S. Mikhailova, N. Yu. Gerasimenko, A. B. Kushnir

Institute of Higher Nervous Activity and Neurophysiology of RAS 117485 Moscow, Butlerova str., 5A, Russia

Received 11 May 2020

In the present study gender differences of an early processing of line orientations were analyzed. 34 participants (16 males and 18 females) were asked to determine whether stimuli (eight square gratings of oblique orientations with the step of 9°) were oriented closer to vertical, horizontal or the clockwise primary oblique (45°) and press the corresponding button. The accuracy, reaction time (RT) and event-related potentials (ERP) were recorded. It was found, than females showed lower accuracy than males, but RT was similar between genders. In contrast, ERP analysis revealed significant gender differences. Over the caudal cortical area only males demonstrated the dependence of the early negativity N1 during the oblique line estimation. Specifically, the N1 amplitude was lower for oblique lines close to the cardinal referents and more high for oblique lines close to 45°. This effect was more pronounce over the occipital area. The early sensitivity to oblique orientations in the occipital cortex in males was assumed to be connected with an androgen-dependent morphological features in ventral and dorsal visual pathways (Handa, McGivern, 2014).

Key words: vision, visual cortex, visual perception, line orientation, oblique orientation, ERP

DOI: 10.31857/S0235009220040046

Cite: Mikhailova E. S., Gerasimenko N. Yu., Kushnir A. B. Psikhofizicheskie i neirofiziologicheskie kharakteristiki otsenki naklonnykh orientatsii u muzhchin i zhenshchin [Behavioral and neurophysiological characteristics of oblique orientations estimation in males and females]. Sensornye sistemy [Sensory systems]. 2020. V. 34(4). P. 283–298 (in Russian). doi: 10.31857/S0235009220040046

References:

  • Mikhailova E.S., Gerasimenko N.Y., Krylova M.A., Izyurov I.V., Slavutskaya A.V. Mekhanizmy orientacionnoj chuvstvitel’nosti zritel’noj sistemy cheloveka. Soobshchenie II. Korkovye mekhanizmy rannih etapov pererabotki informacii ob orientacii linij. [Mechanisms of orientation sensitivity of human visual system: Part II. Neural patterns of early processing of information about line orientation]. Fiziologiia cheloveka [Human Physiology]. 2015. V. 41 (3). P. 5–18. (in Russian). https://doi.org/10.7868/S013116461503011X
  • Slavutskaya A.V., Gerasimenko N.Y., Mikhailova E.S. Mekhanizmy orientacionnoj chuvstvitel’nosti zritel’noj sistemy cheloveka. Soobshchenie I. Povedencheskie harakteristiki orientacionnoj chuvstvitel’nosti. Vliyanie haraktera zadachi, eksperimental’nyh uslovij i pola [Mechanisms of orientation sensitivity in the human visual system: Part I. Behavioral characteristics of orientation sensitivity. Influence of the task type, experimental conditions, and gender]. Fiziologiia cheloveka [Human Physiology]. 2014. V. 40 (6). P. 88–97. (in Russian). https://doi.org/10.7868/S0131164614050154
  • Sushchin M.A. Bajesovskij razum: Novaya perspektiva v kognitivnoj nauke [The Bayesian mind: A new theory in cognitive investigations]. Voprosy filosofii [Russian Studies in Philosophy]. 2017. V. 3. P. 74–87 (in Russian).
  • Alberts B.B.G.T., de Brouwer A.J., Selen L.P.J., Medendorp W.P. A Bayesian account of visual-vestibular interactions in the rod-and-frame task. 2016. Eneuro. V. 3 (5). P. 1–14. https://doi.org/10.1523/ENEURO.0093-16.2016
  • Appelle S. Perception and discrimination as a function of stimulus orientation: The “oblique effect” in man and animals. Psychological Bulletin. 1972. V. 78 (4). P. 266–278. https://doi.org/10.1037/h0033117
  • Barnett-Cowan M., Dyde R.T., Thompson C., Harris L.R. Multisensory determinants of orientation perception: task-specific sex differences. Europ. J. Neurosci. 2010. V. 31 (10). P. 1899–1907. https://doi.org/10.1111/j.1460-9568.2010.07199.x
  • Bloem I.M., Ling S. Attentional modulation interacts with orientation anisotropies in contrast perception. J. Vision. 2017. V. 17 (11). P. 1–14. https://doi.org/10.1167/17.11.6
  • Bocchi A., Palermo L., Boccia M., Palmiero M., D’Amico S., Piccardi L. Object recognition and location: Which component of object location memory for landmarks is affected by gender? Evidence from four to ten year-old children. Applied Neuropsychology: Child. 2018. P. 1–10. https://doi.org/10.1080/21622965.2018.1504218
  • Boone A.P., Maghen B., Hegarty M. Instructions matter: Individual differences in navigation strategy and ability. Memory and Cognition. 2019. V. 47 (7). P. 1401–1414. https://doi.org/10.3758/s13421-019-00941-5
  • Brun C.C., Leporé N., Luders E., Chou Y.Y., Madsen S.K., Toga A.W., Thompson P.M. Sex differences in brain structure in auditory and cingulate regions. NeuroReport. 2009. V. 20 (10). P. 930–935. https://doi.org/10.1097/WNR.0b013e32832c5e65
  • Butler T., Imperato-McGinley J., Pan H., Voyer D., Cordero J., Zhu Y.S., Stern E., Silbersweig D. Sex differences in mental rotation: Top-down versus bottom-up processing. NeuroImage. 2006. V. 32 (1). P. 445–456. https://doi.org/10.1016/j.neuroimage.2006.03.030
  • Campbell F.W., Kulikowski J.J. Orientational selectivity of the human visual system. J. Physiol. 1966. V. 187 (2). P. 437–445. https://doi.org/10.1113/jphysiol.1966.sp008101
  • Caparelli-Dáquer E.M., Oliveira-Souza R., Moreira Filho P.F. Judgment of line orientation depends on gender, education, and type of error. Brain and Cognition. 2009. V. 69 (1). P. 116–120. https://doi.org/10.1016/j.bandc.2008.06.001
  • Clemens B., Junger J., Pauly K., Neulen J., NeuschaeferRube C., Frölich D., Mingoia G., Derntl B., Habel U. Male-to-female gender dysphoria: Gender-specific differences in resting-state networks. Brain and Behavior. 2017. V. 7 (5). e00691–e00691. https://doi.org/10.1002/brb3.691
  • Collaer M.L., Nelson J.D. Large visuospatial sex difference in line judgment: Possible role of attentional factors. Brain and Cognition. 2002. V. 49 (1). P. 1–12. https://doi.org/10.1006/brcg.2001.1321
  • Cuturi L.F., Gori M. Biases in the visual and haptic subjective vertical reveal the role of proprioceptive/vestibular priors in child development. Frontiers in Neurology. 2019. V. 10. P. 1–10. https://doi.org/10.3389/fneur.2018.01151
  • Dakin C.J., Rosenberg A. Gravity estimation and verticality perception. Handbook of Clinical Neurology. 2019. V. 159. P. 43–59. https://doi.org/10.1016/B978-0-444-63916-5.00003-3
  • Dickinson A., Jones M., Milne E. Oblique orientation discrimination thresholds are superior in those with a high level of autistic traits. J. Autism and Developmental Disorders. 2014. V. 44. P. 2844–2850. https://doi.org/10.1007/s10803-014-2147-1
  • Dragoi V., Turcu C.M., Sur M. Stability of cortical responses and the statistics of natural scenes. Neuron. 2001. V. 32 (6). P. 1181–1192. https://doi.org/10.1016/S0896-6273
  • Edden R.A., Muthukumaraswamy S.D., Freeman T.C., Singh K.D. Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J. Neurosci. 2009. V. 29 (50). P. 15721–15726. https://doi.org/10.1523/jneurosci.4426-09.2009
  • Friedman-Hill S., Maldonado P.E., Gray C.M. Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations. Cerebral Cortex. 2000. V. 10 (11). P. 1105–1116. https://doi.org/10.1093/cercor/10.11.1105
  • Furmanski C., Engel S. An oblique effect in human primary visual cortex. Nature Neuroscience. 2000. V. 3. P. 535–536. https://doi.org/10.1038/75702
  • Gagnon K.T., Thomas B.J., Munion A., Creem-Regehr S.H., Cashdan E.A., Stefanucci J.K. Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition. 2018.V. 180. P. 108–117. https://doi.org/10.1016/j.cognition.2018.06.020
  • Handa R.J., McGivern R.F. Steroid hormones, receptors, and perceptual and cognitive sex differences in the visual system. Current Eye Research. 2014. V. 40 (2). P. 110–127. https://doi.org/10.3109/02713683.2014.952826
  • Hansen B.C., Essock E.A. A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. J. Vision. 2004. V. 4 (12). P. 1044–1060. https://doi.org/10.1167/4.12.5
  • Harris T.A., Scheuringer A., Pletzer B. Perspective and strategy interactively modulate sex differences in a 3D navigation task. Biol. Sex Differences. 2019. V. 10 (1). P. 1–12. https://doi.org/10.1186/s13293-019-0232-z
  • Hines M., Fane B.A., Pasterski V.L., Mathews G.A., Conway G.S., Brook C. Spatial abilities following prenatal androgen abnormality: Targeting and mental rotations performance in individuals with congenital adrenal hyperplasia. Psychoneuroendocrinology. 2003. V. 28 (8). P. 1010–1026. https://doi.org/10.1016/S0306-4530(02)00121-X
  • Herlitz A., Airaksinen E., Nordström E. Sex differences in episodic memory: The impact of verbal and visuospatial ability. Neuropsychology. 1999. V. 13 (4). P. 590–597. https://doi.org/10.1037/0894-4105.13.4.590
  • Huang L., Shou T., Yu H., Sun C., Liang Z. Slab-like functional architecture of higher order cortical area 21a showing oblique effect of orientation preference in the cat. NeuroImage. 2006. V. 32. P. 1365–1374. https://doi.org/10.1016/j.neuroimage.2006.05.007
  • Hubel D.H., Wiesel T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiology. 1962. V. 160 (1). P. 106–154. https://doi.org/10.1113/jphysiol.1962.sp006837
  • Iachini T., Sergi I., Ruggiero G., Gnisci A. Gender differences in object location memory in a real three-dimensional environment. Brain and Cognition. 2005. V. 59 (1). P. 52–59. https://doi.org/10.1016/j.bandc.2005.04.004
  • Kimura D. Sex and cognition. Cambridge, MA: MIT Press, 1999. 230 p. ISBN: 9780262112369
  • Koelewijn L., Dumont J.R., Muthukumaraswamy S.D., Rich A.N., Singh K.D. Induced and evoked neural correlates of orientation selectivity in human visual cortex. NeuroImage. 2011. V. 54 (4). P. 2983–2993. https://doi.org/10.1016/j.neuroimage.2010.11.045
  • Kramer J.H., Kaplan E., Delis D.C., O’Donnell L., Prifitera A. Developmental sex differences in verbal learning. Neuropsychology. 1997. V. 11 (4). P. 577–584. https://doi.org/10.1037/0894-4105.11.4.577
  • Krolick K.N., Zhu Q., Shi H. Effects of estrogens on central nervous system neurotransmission: Implications for sex differences in mental disorders. Prog. Molecular Biol. Translational Sci. 2018. V. 160. P. 105–171. https://doi.org/10.1016/bs.pmbts.2018.07.008
  • Lee J., Lee C. Changes in orientation discrimination at the time of saccadic eye movements. Vision Research. 2008. V. 48 (21). P. 2213–2223. https://doi.org/10.1016/j.visres.2008.06.014
  • Li B., Peterson, M.R., Freeman R.D. Oblique effect: A neural basis in the visual cortex. J. Neurophysiol. 2003. V. 90 (1). P. 204–217. https://doi.org/10.1152/jn.00954.2002
  • Luyat M., Mobarek S., Leconte C., Gentaz E. The plasticity of gravitational reference frame and the subjective vertical: Peripheral visual information affects the oblique effect. Neuroscience Letters. 2005. V. 385 (3). P. 215–219. https://doi.org/10.1016/j.neulet.2005.05.044
  • Luyat M., Noël M., Thery V., Gentaz E. Gender and line size factors modulate the deviations of the subjective visual vertical induced by head tilt. BMC Neuroscience. 2012. V. 13 (1). P. 1–8. https://doi.org/10.1186/1471-2202-13-28
  • McGivern R.F., Huston J.P., Byrd D., King T., Siegle G.J., Reilly J. Sex differences in visual recognition memory: Support for a sex-related difference in attention in adults and children. Brain and Cognition. 1997. V. 34 (3). P. 323–336. https://doi.org/10.1006/brcg.1997.0872
  • Mikhailova E.S., Gerasimenko N.Y., Slavutskaya A.V. Effects of line orientation in visual evoked potentials. Spatial dynamics. and gender differences of neural oblique effect. BioRxiv. 2018. 323782. https://doi.org/10.1101/323782
  • Mikhailova E.S., Slavutskaya A.V., Gerasimenko N.Yu. Gender differences in the recognition of spatially transformed figures: Behavioral data and event-related potentials (ERPs). Neuroscience Letters. 2012. V. 524 (2). P. 74–78.
  • Muthukumaraswamy S.D., Edden R.A.E., Jones D.K., Swettenham J.B., Singh K.D. Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc. National Acad. Sci. 2009. V. 106 (20). P. 8356–8361. https://doi.org/10.1073/pnas.0900728106
  • Nasr S., Tootell R.B. Role of fusiform and anterior temporal cortical areas in facial recognition. Neuroimage. 2012. V. 63 (3). P. 1743–1753. https://doi.org/10.1016/j.neuroimage.2012.08.031
  • Nazareth A., Huang X., Voyer D., Newcombe N. A metaanalysis of sex differences in human navigation skills. Psychonomic Bull. Rev. 2019. V. 26 (5). P. 1503–1528. https://doi.org/10.3758/s13423-019-01633-6
  • Nuñez J.L., Jurgens H.A., Juraska J.M. Androgens reduce cell death in the developing rat visual cortex. Developmental Brain Research. 2000. V. 125 (1–2). P. 83–88. https://doi.org/10.1016/S0165-3806
  • Nuñez J.L., Lauschke D.M., Juraska J.M. Cell death in the development of the posterior cortex in male and female rats. J. Comparative Neurol. 2001. V. 436 (1). P. 32–41. https://doi.org/10.1002/cne.1051
  • Ocklenburg S., Hirnstein M., Ohmann H.A., Hausmann M. Mental rotation does not account for sex differences in left-right confusion. Brain and Cognition. 2011. V. 76 (1). P. 166–171. https://doi.org/10.1016/j.bandc.2011.01.010
  • Patten M.L., Mannion D.J., Clifford C.W.G. Correlates of perceptual orientation biases in human primary visual cortex. J. Neurosci. 2017. V. 37 (18). P. 4744–4750. https://doi.org/10.1523/JNEUROSCI.3511-16.2017
  • Proverbio A.M., Esposito P., Zani A. Early involvement of the temporal area in attentional selection of grating orientation: an ERP study. Cognitive Brain Research. 2002. V. 13 (1). P. 139–151. https://doi.org/10.1016/s0926-6410(01)00103-3
  • Samonds J., Bonds A.B. Gamma Oscillation maintains stimulus structure-dependent synchronization in cat visual cortex. J. Neurophysiol. 2005. V. 93. P. 223-36. https://doi.org/10.1152/jn.00548.2004
  • Saucier D.M., Green S.M., Leason J., MacFadden A., Bell S., Elias L.J. Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies? Behavioral Neuroscience. 2002. V. 116 (3). P. 403–410. https://doi.org/10.1037/0735-7044.116.3.403
  • Seymoure P., Juraska J.M. Vernier and grating acuity in adult hooded rats: The influence of sex. Behavioral Neuroscience. 1997. V. 111 (4). P. 792–800. https://doi.org/10.1037/0735-7044.111.4.792
  • Shaqiri A., Roinishvili M., Grzeczkowski L., Chkonia E., Pilz K., Mohr C., Brand A., Kunchulia M., Herzog M.H. Sex-related differences in vision are heterogeneous. Scientific reports. 2018. V. 8 (1). P. 7521. https://doi.org/10.1038/s41598-018-25298-8
  • Sillito A.M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. The J. Physiol. 1975. V. 250 (2). P. 305–329. https://doi.org/10.1113/jphysiol.1975.sp011056
  • Song Y., Sun L., Wang Y., Zhang X., Kang J., Ma X., Yang B., Guan Y., Ding Y. The effect of short-term training on cardinal and oblique orientation discrimination: An ERP study. Intern. J. Psychophysiol. 2010. V. 75 (3). P. 241–248. https://doi.org/10.1016/j.ijpsycho.2009.11.007
  • Takács E., Sulykos I. Czigler I., Barkaszi. I., Balázs L. Oblique effect in visual mismatch negativity. Frontiers in Human Neuroscience. 2013. V. 7. P. 591. https://doi.org/10.3389/fnhum.2013.00591
  • Yagi S., Galea L.A.M. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology. 2018. V. 44 (1). P. 200–213. https://doi.org/10.1038/s41386-018-0208-4
  • Yang B., Ma X., Schweinhart A.M., Wang F., Sun M., Song Y. Comparison of event-related potentials elicited by cardinal and oblique orientations with broad-band noise stimuli. Vision Research. 2012. V. 60. P. 95–100. https://doi.org/10.1016/j.visres.2012.03.011
  • Yashar A., Denison R.N. Feature reliability determines specificity and transfer of perceptual learning in orientation search. PLOS Computational Biology. 2017. V. 13 (12). e1005882. https://doi.org/10.1371/journal.pcbi.1005882