• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Plasticity of inertial mass in the equilibrium organ within an altering gravitational field

© 2020 G. I. Gorgiladze

Institute of Biomedical Problems RAS 123007 Moscow, Khoroshevskoe higyway, 76a, Russia

Received 07 May 2020

The review makes a summary of experimental investigations of inertial mass in the equilibrium organ of invertebrates and vertebrates (coelenterates, mollusks, amphibians, fishes, birds, rats) exposed to weightlessness aboard robotic and piloted space vehicles and by clinostatting, and hypergravity by centrifugation. Inertial mass senses Earth’s gravity force and linear accelerations. It contains fairly large ear-stones or multiple and small statoconia. They are endogenous biominerals that form layered accretion around their nuclei. Inertial mass is characterized by high plasticity. It increases in weightlessness and during clinostatting and, on the contrary, decreases when exposed to centrifuge accelerations. From the above it can be concluded that the gravitational field is a critical factor in abiotic environments responsible for inertial mass formation in the animal organ of equilibrium.

Key words: statocyst, labyrinth, gravitoception, inertial mass, weightlessness, hypergravity

DOI: 10.31857/S0235009220040022

Cite: Gorgiladze G. I. Plastichnost inertsialnoi massy v organe ravnovesiya v izmenyayushchemsya gravitatsionnom pole [Plasticity of inertial mass in the equilibrium organ within an altering gravitational field]. Sensornye sistemy [Sensory systems]. 2020. V. 34(4). P. 267–282 (in Russian). doi: 10.31857/S0235009220040022

References:

  • Bannikov A.G., Gilyarov M.S., Gladkov N.A. Zhizn’ zhivotnykh. Tom 1. Bespozvonochnyye. [Animal life. V. 1. Invertebrates]. Ed. Zenkevich L.A. Moscow. Publishing House “Enlightenment”. 1968. 576 p. (in Russian).
  • Bryanov I.I., Gorgiladze G.I., Kornilova L.N. Vestibulyarnaya funktsiya. [Vestibular function]. Rezul’taty meditsinskikh issledovaniy, vypolnennykh na orbital’nom nauchno-issledovatel’skom kompleksa “Salyut-6” – “Soyuz”. Gl. 10. Sensornyye sistemy [The results of medical research performed on the Salyut-6 orbital research complex – Soyuz. Ch. 10. Sensory systems]. Ed. Gurovsky N.N. Moscow. Publishing House of the Academy of Sciences of the USSR. 1986. P. 169–185. (in Russian).
  • Vinnikov Ya.A., Gazenko O.G., Titova L.K. Retseptor gravitatsii. [Gravity receptor]. Seriya “Problemy kosmicheskoy biologii”. [“Series Problems of Space Biology”]. V. XII. L. “Nauka”, 1971. 523 p. (in Russian).
  • Gorgiladze G.I. Stimuliruyushcheye vliyaniye nevesomosti na rost statokoniy (eksperimenty na avtomaticheskikh kosmicheskikh apparatakh “Foton” i “Resurs-F” i pilotiruyemom orbital’nom komplekse “Mir”). [The stimulating effect of weightlessness on the growth of statoconia (experiments on the “Foton” and “ResursF” automatic spacecraft and the “Mir” manned orbiting complex)]. [Georgian Engineering News]. 2001. No. 4. P. 113–119. (in Russian).
  • Gorgiladze G.I. Strukturno-funktsional’nyye osobennosti statotsista ulitok Helix lucorum. [Structural and functional features of the statocyst of snails Helix lucorum]. Orbital’naya stantsiya “Mir”. Mediko-biologicheskiye eksperimenty. [Orbital station “Mir”. Biomedical experiments]. Moscow. 2002. V. 2. P. 366–383. (in Russian).
  • Gorgiladze G.I., Bukia R.D., Davitashvili M.T. Morfologicheskiye osobennosti statokoniy v statotsistakh nazemnoy legochnoy ulitki Helix lucorum. Byul. eksper. [Morphological features of statoconia in the statocysts of the terrestrial pulmonary snail Helix lucorum]. Вyulleten' eksperimental’noy biologii i meditsiny [Bulletin of Experimental Biology and Medicine]. 2010. V. 149. No. 2. P. 236–240. (in Russian).
  • Gorgiladze G.I., Bukia R.D., Kalandarishvili E.L. Plastichnost’ inertsial’noy massy v statotsistakh nazemnykh gastropod v usloviyakh izmenyayushchegosya gravitatsionnogo polya (nevesomost', gipervesomost'). [Plasticity of inertial mass in statocysts of terrestrial gastropods in a changing gravitational field (weightlessness, hyperweighting)]. 2011.V. 45. No. 5. P. 28–32. (in Russian).
  • Gorgiladze G.I., Nosovsky A.M., Bukia R.D. Statolit Pomatias rivulare [Statolith of the Pomatias rivulare]. Sensornye sistemy [Sensory systems]. 2013. V. 27. No. 3. P. 216–223. (in Russian).
  • Gorgiladze G.I., Samarin G.I., Bryanov I.I. Mezhlabirintnaya asimmetriya, vestibulyarnaya disfunktsiya i kosmicheskaya bolezn' dvizheniya. [Inter-labyrinth asymmetry, vestibular dysfunction and space motion sickness]. Kosmicheskaya biologiya i aviakosmicheskaya meditsina [Space biology and aerospace medicine]. 1986. V. 20. No. 3. P. 19–31. (in Russian).
  • Gorgiladze G.I., Shipov A.A., Horn E. Biologicheskiye eksperimenty v nevesomosti: funktsiya ravnovesiya. [Biological experiments in zero gravity: the equilibrium function]. Aviakosmicheskaya i ekoloricheskaya meditsina [Aerospace and environmental medicine]. 2012. V. 46. No. 5. P. 3–18. (in Russian).
  • Javelidze G. Identifier of Georgian terrestrial mollusks. Tbilisi, 1972. (In Georgian).
  • Egorov B.B., Samarin G.I. Vozmozhnoye izmeneniye parnoy raboty vestibulyarnogo apparata v usloviyakh nevesomosti. [A possible change in the paired work of the vestibular apparatus in zero gravity]. Kosmicheskaya biol. [Space biol.]. 1970. No. 2. P. 85–86. (in Russian).
  • Likharev I.M., Rammelmeyer E.S. Nazemnyye mollyuski fauny SSSR. [Ground mollusks of the fauna of the USSR]. Moscow – Leningrad. Publishing House of the Academy of Sciences of the USSR. 1952. (in Russian).
  • Lychakov D.V., Lavrova E.A. Issledovaniye struktury vestibulyarnogo apparata i ionnogo sostava tela lichinok shportsevoy lyagushki posle prebyvaniya v usloviyakh nevesomosti. [The study of the structure of the vestibular apparatus and the ionic composition of the body of the larvae of the Spur frog after being in zero gravity]. Kosmicheskaya biol. [Space biol.]. 1985. V. 19. No. 3. P. 48–52. (in Russian).
  • Mertens D. Mir mollyuskov [The world of mollusks]. Moscow. Publishing house “World of books”. 2011. 428 p. (in Russian).
  • Mina M.V., Klevezal G.A. Printsipy issledovaniya registriruyushchikh struktur. [The principles of the study ofrecording structures]. Uspekhi sovremennoy biologii [Successes of modern biology]. 1970. V. 70. Issue 3 (6). P. 341–352. (in Russian).
  • Naumov D.V. Stsifoidnyye meduzy morey SSSR [Scyphoid jellyfish of the seas of the USSR]. Moscow-Leningrad. Publishing House of the Academy of Sciences of the USSR. 1961. 106 p. (in Russian).
  • Samarin G.I., Egorov B.B. Ob asimmetrii otolitovykh reaktsiy u ryb. [On the asymmetry of otolithic reactions in fish]. Kosmicheskaya biol. [Space biol.]. 1973. No. 2. P. 37–40. (in Russian).
  • Anken R.H., Baur U., Hilbig R. Clinorotation increases the growth of utricular otoliths of developing cichlid fish. Microgravity Sci. and Technol. 2010. V. 22. Is. 2. P. 151–154.
  • Anken R.H., Beier M., Rahmann H. Influence of hypergravity on fish inner ear otoliths: I. Developmental growth profile. Adv. Space Res. 2002. V. 30. № 4. P. 721–725.
  • Anken R.H., Kappel Th., Rahmann H. Morphometry of fish inner ear otoliths after development at 3g hypergravity. Acta Otolaryngol. 1998. V. 118. P. 534–539.
  • Anken R.H., Kappel T., Rahmann H. On the influence of altered gravity on the growth of fish inner ear otoliths. Acta Astronaut. 1999. V. 44 (7–12). P. 585–591.
  • Fermin C.D., Martin D., Jones T. Microgravity in the STS-29 space shuttle Discovery affected the vestibular system of chick embryos. Histol. and Histopathol. 1996. V. 11. № 2. P. 407–426.
  • Gao W., Wiederhold M.L. The structure of the statocyst of the freshwater snail Biomphalaria glabrata (Pulmonata, Basommatophora). Hear. Res. 1997. V. 109. № 1–2. P. 109–124.
  • Gao W., Wiederhold M., Hejl R. Development of the statocyst in the freshwater snail Biomphalaria glabrata (Pulmonata, Basommatophora). Hear Res. 1997. V. 109 № 1–2. P. 125–134.
  • Geuze J.J. Observations on the function and the structure of the statocysts of Lymnae stagnalis. Netherl. J. Zool. 1968. V. 18. № 2. P. 155–204.
  • Ghesquiere S. Apple snail (Ampullariidae). 2007.
  • http://www.applesnail.net (accessed 28 April 2007).
  • Helm R.R. Evolution and development of scyphozoan jellyfish. Adv. Space Res. 1994. V. 14. Is. 8. P. 317–325.
  • Hilbig R., Anken R.H., Bauerle A. Susceptibility to motion sickness in fish: a parabolic aircraft flight study. J. Grav. Physiol. 2002. V. 9. № 1. P. 29–30.
  • Jarne P. Biological invasions: The case of planorbid snails. J. of Helminthol. 2005. V. 79. № 3. P. 249–256.
  • Kriegstein A.R., Castellucci V.F., Kandel E.R. Metamorphosis of Aplysia californica in laboratory culture. Proceedings of the National Academy of Sciences. 1974. V. 71. № 9. P. 3654–3658.
  • Pedrozo H.A., Schwartz Z., Luther M. A mechanism of adaptation to hypergravity in the statocyst of Aplysia californica. Hear. Res. 1996. V. 102. № 1–2. P. 51–62.
  • Pedrozo H.A., Wiederhold M.L. Effects of hypergravity on statocyst development in embryonic Aplysia californica. Hear. Res. 1994. V. 79. P. 137–146.
  • Rahmann H., Anken R.H. Neuroplastic reactivity of fish induced by altered gravity conditions: a review of recent results. Adv. Space Res. 1998. V. 22. P. 255–264.
  • Rahmann H., Anken R.H. Gravity related research with fishes – perspectives in regard to the upcoming International space station, ISS. Adv. Space Res. 2002. V. 30. № 4. P. 697–710.
  • Ross M.D. Implications of otoconial changes in microgravity. Physiologist. 1987. V. 30. (Suppl.). P. 90–93.
  • Spangenberg D.B. Thyroxine induced metamorphosis in Aurelia. The J. of Experimental Zoology. 1971. V. 178. P. 183–194.
  • Spangenberg D.B. Rhopalium development in Aurelia aurita ephyrae. Hydrobiol. 1991. V. 216/217. P. 45–49.
  • Spangenberg D.B. Effects of microgravity-induced weightlessness on Aurelia ephyrae differentiation and statolith synthesis (DC85). Reproduced under NASA’s terms for educational use. March 2004.
  • Spangenberg D.B., Coccaro E., Schwarte R. Touch-plate and statolith formation in gravireceptors of ephyrae which developed while weightless in space. Scanning Microscopy. 1996. V. 10. № 3. P. 875–888.
  • Spangenberg D.B., Jernigan T., McCombs R. et al. Development studies of Aurelia (jellyfish) ephyrae, which developed during the SLS-1 mission. Adv. Space Res. 1994a. V. 14. № 8. P. 239–247.
  • Spangenberg D.B., Jernigan T., Philput C., Lowe B. Gravireceptor development in jellyfish ephyrae in space and on earth. Adv. Space Res. 1994b. V. 14. № 8. P. 317– 325.
  • Wiederhold M.L., Harrison J.L., Ortiz C.A. Enhanced production of the “test mass” in the statocyst of pond snails reared in microgravity. Proc. Fifteenth Space Utilization Res. Sympos. Tokyo. 1999. V. 15. P. 89– 92.
  • Wiederhold M.L., Harrison J.L., Parker K.A., Nomura H. Otoliths developed in microgravity. J. Grav. Physiol. 2000. V. 7. № 2. P. 39–42.
  • Wiederhold M.L., Pedrozo H.A., Harrison J.L. et al. Development of gravity-sensing organs in altered gravity conditions: opposite conclusions from an amphibian and a molluscan preparation. J. Grav. Physiol. 1997. V. 4. № 2. P. 51–54.
  • Wiederhold M.L., Sharma J.S., Driscoll B.P., Harrison J.L. Development of the statocyst in Aplysia californica. 1. Observations on statoconial development. Hear. Res. 1990. V. 49. P. 63–78.
  • Wiederhold M.L., Sheridan C.E., Smith N.K. Statoconia formation in molluscan statocysts. Scanning Microsc. 1986. V. 2. P. 781–792.