• 1990 (Том 4)
  • 1989 (Том 3)
  • 1988 (Том 2)
  • 1987 (Том 1)

ПСИХОФИЗИЧЕСКИЕ И НЕЙРОФИЗИОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОЦЕНКИ НАКЛОННЫХ ОРИЕНТАЦИЙ У МУЖЧИН И ЖЕНЩИН

© 2020 г. Е. С. Михайлова, Н. Ю. Герасименко, А. Б. Кушнир

ФГБУН Институт высшей нервной деятельности и нейрофизиологии РАН 117485 Москва, ул. Бутлерова, 5А, Россия
esmikhailova@mail.ru

Поступила в редакцию 11.05.2020 г.

В работе исследовали половые различия дискриминации наклонных ориентаций. Задачу определения близости наклонных ориентаций к горизонтальному, вертикальному и наклонному (45°) референтам выполняли 34 испытуемых (16 мужчин и 18 женщин) с нормальным зрением. Регистрировали точность, время реакции и вызванные потенциалы каудальных областей коры. Показано, что женщины совершают больше ошибок по сравнению с мужчинами, но не обнаруживают различий во времени реакции. Выявлены половые различия раннего анализа наклонных ориентаций. Только в группе мужчин амплитуда ранней негативности N1 ВП затылочной коры зависела от наклона линий: минимальные значения амплитуды характерны для ответа на наклонные линии, близкие к кардинальным осям, максимальные – на линии, близкие к 45°. Предполагается, что в основе половых различий ранней чувствительности затылочной коры к наклонным ориентациям лежат особенности переработки информации в дорзальном и вентральном зрительных путях, определяемые пре- и постнатальным влиянием стероидных гормонов (Handa, McGivern, 2014).

Ключевые слова: рение, зрительная кора, зрительное восприятие, ориентация, наклонная ориентация, вызванный потенциал

DOI: 10.31857/S0235009220040046

Цитирование для раздела "Список литературы": Михайлова Е. С., Герасименко Н. Ю., Кушнир А. Б. Психофизические и нейрофизиологические характеристики оценки наклонных ориентаций у мужчин и женщин. Сенсорные системы. 2020. Т. 34. № 4. С. 283–298. doi: 10.31857/S0235009220040046
Цитирование для раздела "References": Mikhailova E. S., Gerasimenko N. Yu., Kushnir A. B. Psikhofizicheskie i neirofiziologicheskie kharakteristiki otsenki naklonnykh orientatsii u muzhchin i zhenshchin [Behavioral and neurophysiological characteristics of oblique orientations estimation in males and females]. Sensornye sistemy [Sensory systems]. 2020. V. 34(4). P. 283–298 (in Russian). doi: 10.31857/S0235009220040046

Список литературы:

  • Михайлова Е.С., Герасименко Н.Ю., Крылова М.А., Изъюров И.В., Славуцкая А.В. Механизмы ориентационной чувствительности зрительной системы человека. Сообщение II. Корковые механизмы ранних этапов переработки информации об ориентации линий. Физиология человека. 2015. Т. 41 (3). С. 5–18. https://doi.org/10.7868/S013116461503011X
  • Славуцкая А.В., Герасименко Н.Ю., Михайлова Е.С. Механизмы ориентационной чувствительности зрительной системы человека. Сообщение I. Поведенческие характеристики ориентационной чувствительности. Влияние характера задачи, экспериментальных условий и пола. Физиология человека. 2014. Т. 40 (6). С. 88–97. https://doi.org/10.7868/S0131164614050154
  • Сущин М.А. Байесовский разум: Новая перспектива в когнитивной науке. Вопросы философии. 2017. Т. 3. С. 74–87.
  • Alberts B.B.G.T., de Brouwer A.J., Selen L.P.J., Medendorp W.P. A Bayesian account of visual-vestibular interactions in the rod-and-frame task. 2016. Eneuro. V. 3 (5). P. 1–14. https://doi.org/10.1523/ENEURO.0093-16.2016
  • Appelle S. Perception and discrimination as a function of stimulus orientation: The “oblique effect” in man and animals. Psychological Bulletin. 1972. V. 78 (4). P. 266–278. https://doi.org/10.1037/h0033117
  • Barnett-Cowan M., Dyde R.T., Thompson C., Harris L.R. Multisensory determinants of orientation perception: task-specific sex differences. Europ. J. Neurosci. 2010. V. 31 (10). P. 1899–1907. https://doi.org/10.1111/j.1460-9568.2010.07199.x
  • Bloem I.M., Ling S. Attentional modulation interacts with orientation anisotropies in contrast perception. J. Vision. 2017. V. 17 (11). P. 1–14. https://doi.org/10.1167/17.11.6
  • Bocchi A., Palermo L., Boccia M., Palmiero M., D’Amico S., Piccardi L. Object recognition and location: Which component of object location memory for landmarks is affected by gender? Evidence from four to ten year-old children. Applied Neuropsychology: Child. 2018. P. 1–10. https://doi.org/10.1080/21622965.2018.1504218
  • Boone A.P., Maghen B., Hegarty M. Instructions matter: Individual differences in navigation strategy and ability. Memory and Cognition. 2019. V. 47 (7). P. 1401–1414. https://doi.org/10.3758/s13421-019-00941-5
  • Brun C.C., Leporé N., Luders E., Chou Y.Y., Madsen S.K., Toga A.W., Thompson P.M. Sex differences in brain structure in auditory and cingulate regions. NeuroReport. 2009. V. 20 (10). P. 930–935. https://doi.org/10.1097/WNR.0b013e32832c5e65
  • Butler T., Imperato-McGinley J., Pan H., Voyer D., Cordero J., Zhu Y.S., Stern E., Silbersweig D. Sex differences in mental rotation: Top-down versus bottom-up processing. NeuroImage. 2006. V. 32 (1). P. 445–456. https://doi.org/10.1016/j.neuroimage.2006.03.030
  • Campbell F.W., Kulikowski J.J. Orientational selectivity of the human visual system. J. Physiol. 1966. V. 187 (2). P. 437–445. https://doi.org/10.1113/jphysiol.1966.sp008101
  • Caparelli-Dáquer E.M., Oliveira-Souza R., Moreira Filho P.F. Judgment of line orientation depends on gender, education, and type of error. Brain and Cognition. 2009. V. 69 (1). P. 116–120. https://doi.org/10.1016/j.bandc.2008.06.001
  • Clemens B., Junger J., Pauly K., Neulen J., NeuschaeferRube C., Frölich D., Mingoia G., Derntl B., Habel U. Male-to-female gender dysphoria: Gender-specific differences in resting-state networks. Brain and Behavior. 2017. V. 7 (5). e00691–e00691. https://doi.org/10.1002/brb3.691
  • Collaer M.L., Nelson J.D. Large visuospatial sex difference in line judgment: Possible role of attentional factors. Brain and Cognition. 2002. V. 49 (1). P. 1–12. https://doi.org/10.1006/brcg.2001.1321
  • Cuturi L.F., Gori M. Biases in the visual and haptic subjective vertical reveal the role of proprioceptive/vestibular priors in child development. Frontiers in Neurology. 2019. V. 10. P. 1–10. https://doi.org/10.3389/fneur.2018.01151
  • Dakin C.J., Rosenberg A. Gravity estimation and verticality perception. Handbook of Clinical Neurology. 2019. V. 159. P. 43–59. https://doi.org/10.1016/B978-0-444-63916-5.00003-3
  • Dickinson A., Jones M., Milne E. Oblique orientation discrimination thresholds are superior in those with a high level of autistic traits. J. Autism and Developmental Disorders. 2014. V. 44. P. 2844–2850. https://doi.org/10.1007/s10803-014-2147-1
  • Dragoi V., Turcu C.M., Sur M. Stability of cortical responses and the statistics of natural scenes. Neuron. 2001. V. 32 (6). P. 1181–1192. https://doi.org/10.1016/S0896-6273
  • Edden R.A., Muthukumaraswamy S.D., Freeman T.C., Singh K.D. Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. J. Neurosci. 2009. V. 29 (50). P. 15721–15726. https://doi.org/10.1523/jneurosci.4426-09.2009
  • Friedman-Hill S., Maldonado P.E., Gray C.M. Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations. Cerebral Cortex. 2000. V. 10 (11). P. 1105–1116. https://doi.org/10.1093/cercor/10.11.1105
  • Furmanski C., Engel S. An oblique effect in human primary visual cortex. Nature Neuroscience. 2000. V. 3. P. 535–536. https://doi.org/10.1038/75702
  • Gagnon K.T., Thomas B.J., Munion A., Creem-Regehr S.H., Cashdan E.A., Stefanucci J.K. Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition. 2018.V. 180. P. 108–117. https://doi.org/10.1016/j.cognition.2018.06.020
  • Handa R.J., McGivern R.F. Steroid hormones, receptors, and perceptual and cognitive sex differences in the visual system. Current Eye Research. 2014. V. 40 (2). P. 110–127. https://doi.org/10.3109/02713683.2014.952826
  • Hansen B.C., Essock E.A. A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. J. Vision. 2004. V. 4 (12). P. 1044–1060. https://doi.org/10.1167/4.12.5
  • Harris T.A., Scheuringer A., Pletzer B. Perspective and strategy interactively modulate sex differences in a 3D navigation task. Biol. Sex Differences. 2019. V. 10 (1). P. 1–12. https://doi.org/10.1186/s13293-019-0232-z
  • Hines M., Fane B.A., Pasterski V.L., Mathews G.A., Conway G.S., Brook C. Spatial abilities following prenatal androgen abnormality: Targeting and mental rotations performance in individuals with congenital adrenal hyperplasia. Psychoneuroendocrinology. 2003. V. 28 (8). P. 1010–1026. https://doi.org/10.1016/S0306-4530(02)00121-X
  • Herlitz A., Airaksinen E., Nordström E. Sex differences in episodic memory: The impact of verbal and visuospatial ability. Neuropsychology. 1999. V. 13 (4). P. 590–597. https://doi.org/10.1037/0894-4105.13.4.590
  • Huang L., Shou T., Yu H., Sun C., Liang Z. Slab-like functional architecture of higher order cortical area 21a showing oblique effect of orientation preference in the cat. NeuroImage. 2006. V. 32. P. 1365–1374. https://doi.org/10.1016/j.neuroimage.2006.05.007
  • Hubel D.H., Wiesel T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiology. 1962. V. 160 (1). P. 106–154. https://doi.org/10.1113/jphysiol.1962.sp006837
  • Iachini T., Sergi I., Ruggiero G., Gnisci A. Gender differences in object location memory in a real three-dimensional environment. Brain and Cognition. 2005. V. 59 (1). P. 52–59. https://doi.org/10.1016/j.bandc.2005.04.004
  • Kimura D. Sex and cognition. Cambridge, MA: MIT Press, 1999. 230 p. ISBN: 9780262112369
  • Koelewijn L., Dumont J.R., Muthukumaraswamy S.D., Rich A.N., Singh K.D. Induced and evoked neural correlates of orientation selectivity in human visual cortex. NeuroImage. 2011. V. 54 (4). P. 2983–2993. https://doi.org/10.1016/j.neuroimage.2010.11.045
  • Kramer J.H., Kaplan E., Delis D.C., O’Donnell L., Prifitera A. Developmental sex differences in verbal learning. Neuropsychology. 1997. V. 11 (4). P. 577–584. https://doi.org/10.1037/0894-4105.11.4.577
  • Krolick K.N., Zhu Q., Shi H. Effects of estrogens on central nervous system neurotransmission: Implications for sex differences in mental disorders. Prog. Molecular Biol. Translational Sci. 2018. V. 160. P. 105–171. https://doi.org/10.1016/bs.pmbts.2018.07.008
  • Lee J., Lee C. Changes in orientation discrimination at the time of saccadic eye movements. Vision Research. 2008. V. 48 (21). P. 2213–2223. https://doi.org/10.1016/j.visres.2008.06.014
  • Li B., Peterson, M.R., Freeman R.D. Oblique effect: A neural basis in the visual cortex. J. Neurophysiol. 2003. V. 90 (1). P. 204–217. https://doi.org/10.1152/jn.00954.2002
  • Luyat M., Mobarek S., Leconte C., Gentaz E. The plasticity of gravitational reference frame and the subjective vertical: Peripheral visual information affects the oblique effect. Neuroscience Letters. 2005. V. 385 (3). P. 215–219. https://doi.org/10.1016/j.neulet.2005.05.044
  • Luyat M., Noël M., Thery V., Gentaz E. Gender and line size factors modulate the deviations of the subjective visual vertical induced by head tilt. BMC Neuroscience. 2012. V. 13 (1). P. 1–8. https://doi.org/10.1186/1471-2202-13-28
  • McGivern R.F., Huston J.P., Byrd D., King T., Siegle G.J., Reilly J. Sex differences in visual recognition memory: Support for a sex-related difference in attention in adults and children. Brain and Cognition. 1997. V. 34 (3). P. 323–336. https://doi.org/10.1006/brcg.1997.0872
  • Mikhailova E.S., Gerasimenko N.Y., Slavutskaya A.V. Effects of line orientation in visual evoked potentials. Spatial dynamics. and gender differences of neural oblique effect. BioRxiv. 2018. 323782. https://doi.org/10.1101/323782
  • Mikhailova E.S., Slavutskaya A.V., Gerasimenko N.Yu. Gender differences in the recognition of spatially transformed figures: Behavioral data and event-related potentials (ERPs). Neuroscience Letters. 2012. V. 524 (2). P. 74–78.
  • Muthukumaraswamy S.D., Edden R.A.E., Jones D.K., Swettenham J.B., Singh K.D. Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc. National Acad. Sci. 2009. V. 106 (20). P. 8356–8361. https://doi.org/10.1073/pnas.0900728106
  • Nasr S., Tootell R.B. Role of fusiform and anterior temporal cortical areas in facial recognition. Neuroimage. 2012. V. 63 (3). P. 1743–1753. https://doi.org/10.1016/j.neuroimage.2012.08.031
  • Nazareth A., Huang X., Voyer D., Newcombe N. A metaanalysis of sex differences in human navigation skills. Psychonomic Bull. Rev. 2019. V. 26 (5). P. 1503–1528. https://doi.org/10.3758/s13423-019-01633-6
  • Nuñez J.L., Jurgens H.A., Juraska J.M. Androgens reduce cell death in the developing rat visual cortex. Developmental Brain Research. 2000. V. 125 (1–2). P. 83–88. https://doi.org/10.1016/S0165-3806
  • Nuñez J.L., Lauschke D.M., Juraska J.M. Cell death in the development of the posterior cortex in male and female rats. J. Comparative Neurol. 2001. V. 436 (1). P. 32–41. https://doi.org/10.1002/cne.1051
  • Ocklenburg S., Hirnstein M., Ohmann H.A., Hausmann M. Mental rotation does not account for sex differences in left-right confusion. Brain and Cognition. 2011. V. 76 (1). P. 166–171. https://doi.org/10.1016/j.bandc.2011.01.010
  • Patten M.L., Mannion D.J., Clifford C.W.G. Correlates of perceptual orientation biases in human primary visual cortex. J. Neurosci. 2017. V. 37 (18). P. 4744–4750. https://doi.org/10.1523/JNEUROSCI.3511-16.2017
  • Proverbio A.M., Esposito P., Zani A. Early involvement of the temporal area in attentional selection of grating orientation: an ERP study. Cognitive Brain Research. 2002. V. 13 (1). P. 139–151. https://doi.org/10.1016/s0926-6410(01)00103-3
  • Samonds J., Bonds A.B. Gamma Oscillation maintains stimulus structure-dependent synchronization in cat visual cortex. J. Neurophysiol. 2005. V. 93. P. 223-36. https://doi.org/10.1152/jn.00548.2004
  • Saucier D.M., Green S.M., Leason J., MacFadden A., Bell S., Elias L.J. Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies? Behavioral Neuroscience. 2002. V. 116 (3). P. 403–410. https://doi.org/10.1037/0735-7044.116.3.403
  • Seymoure P., Juraska J.M. Vernier and grating acuity in adult hooded rats: The influence of sex. Behavioral Neuroscience. 1997. V. 111 (4). P. 792–800. https://doi.org/10.1037/0735-7044.111.4.792
  • Shaqiri A., Roinishvili M., Grzeczkowski L., Chkonia E., Pilz K., Mohr C., Brand A., Kunchulia M., Herzog M.H. Sex-related differences in vision are heterogeneous. Scientific reports. 2018. V. 8 (1). P. 7521. https://doi.org/10.1038/s41598-018-25298-8
  • Sillito A.M. The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. The J. Physiol. 1975. V. 250 (2). P. 305–329. https://doi.org/10.1113/jphysiol.1975.sp011056
  • Song Y., Sun L., Wang Y., Zhang X., Kang J., Ma X., Yang B., Guan Y., Ding Y. The effect of short-term training on cardinal and oblique orientation discrimination: An ERP study. Intern. J. Psychophysiol. 2010. V. 75 (3). P. 241–248. https://doi.org/10.1016/j.ijpsycho.2009.11.007
  • Takács E., Sulykos I. Czigler I., Barkaszi. I., Balázs L. Oblique effect in visual mismatch negativity. Frontiers in Human Neuroscience. 2013. V. 7. P. 591. https://doi.org/10.3389/fnhum.2013.00591
  • Yagi S., Galea L.A.M. Sex differences in hippocampal cognition and neurogenesis. Neuropsychopharmacology. 2018. V. 44 (1). P. 200–213. https://doi.org/10.1038/s41386-018-0208-4
  • Yang B., Ma X., Schweinhart A.M., Wang F., Sun M., Song Y. Comparison of event-related potentials elicited by cardinal and oblique orientations with broad-band noise stimuli. Vision Research. 2012. V. 60. P. 95–100. https://doi.org/10.1016/j.visres.2012.03.011
  • Yashar A., Denison R.N. Feature reliability determines specificity and transfer of perceptual learning in orientation search. PLOS Computational Biology. 2017. V. 13 (12). e1005882. https://doi.org/10.1371/journal.pcbi.1005882