• 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Radial distortion correction for camera submerged under water

© 2020 D. D. Senshina, A. A. Glikin, D. V. Polevoy, I. A. Kunina, E. I. Ershov, A. A. Smagina

Institute for Information Transmission Problems, Russian Academy of Sciences 127994 Moscow, Bolshoy Karetny per., 19, Russia
Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Institutskiy per., 9, Russia
Institute for System Analysis of Federal Research Center “Computer Science and Control” of Russian Academy of Sciences 117312 Moscow, pr. 60-letiya Oktyabrya, 9, Russia
National University of Science and Technology “MISIS” 119991 Moscow, Leninsky prospect, 4, Russia
Smart Engines Service LLC 117312 Moscow, pr. 60-letiya Oktyabrya, 9, Russia

Received 19 Mar 2020

The paper investigates the practical applicability of the formula for the radial distortion correction of images that occurs when the camera is immersed in water. To evaluate the quality of correction, a new dataset of underwater images of a chessboard with various refractive indices has been collected. The refractive index was controlled by the degree of salinity of the water. The assembled dataset consists of 662 images, each of which manually marked the nodal points of the chessboard. For collection, two different mobile phone cameras were used: standard and wide-angle. The experiments showed that the radial distortion correction formula allows correcting images with high accuracy comparable to the accuracy of classical calibration algorithms. It is also shown in the work that such a correction method is resistant to small inaccuracies in the indication of the refractive index of water.

Key words: underwater shooting, radial distortion, camera calibration, refractive index

DOI: 10.31857/S0235009220030087

Cite: Senshina D. D., Glikin A. A., Polevoy D. V., Kunina I. A., Ershov E. I., Smagina A. A. Korrektsiya radialnoi distorsii pri pogruzhenii kamery pod vodu [Radial distortion correction for camera submerged under water]. Sensornye sistemy [Sensory systems]. 2020. V. 34(3). P. 254-264 (in Russian). doi: 10.31857/S0235009220030087

References:

  • GOST 14254-2015 (IEC 60529:2013). Stepeni zashchity, obespechivaemye obolochkami (Kod IP) [State standart 14254-2015. The levels of protection provided by the shells (IP Code)]. International Council for Standardization, Metrology and Certification, 2015. C. 12. (in Russian).
  • Pavin A.M. Identifikatsiya podvodnykh ob'ektov proizvol’noi formy na fotosnimkakh morskogo dna [Identification of underwater objects of any shape on photos of the sea floor]. Podvodnye issledovaniya i robototekhnika [Underwater researches and robotics]. 2011. V. 2. №12. P. 26–31 (in Russian).
  • Berman D., Levy D., Avidan S., Treibitz T. Underwater single image color restoration using haze-lines and a new quantitative dataset. 2018. arXiv preprint. arXiv:1811.01343.
  • Brown D. C. Decentering distortion of lenses. Photogrammetric Engineering and Remote Sensing. 1966. V. 32. №3. P. 444–462.
  • Brunken H., Gühmann C. Deep learning self-calibration from planes. Twelfth International Conference on Machine Vision (ICMV 2019). 2020. V. 11433. P. 114333L. https://doi.org/10.1117/12.922899
  • Botelho S., Drews P., Oliveira G.L., da Silva Figueiredo M. Visual odometry and mapping for Underwater Autonomous Vehicles. 6th Latin American Robotics Symposium (LARS 2009). 2009. P. 1–6. https://doi.org/10.1109/LARS.2009.5418320
  • Daimon M., Masumura A. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Applied optics. 2007. V. 46. №. 18. P. 3811–3820.
  • Duan Y., Ling X., Zhang Y., Zhang Z., Liu X., Hu K. A Simple and Efficient Method for Radial Distortion Estimation by Relative Orientation. IEEE Transactions on Geoscience and Remote Sensing. 2017. V. 55. № 12. P. 6840–6848. https://doi.org/10.1109/TGRS.2017.2735188
  • Elibol A., Möller B., Garcia R. Perspectives of auto-correcting lens distortions in mosaic-based underwater navigation. IEEE 23rd International Symposium on Computer and Information Sciences. 2008. P. 1–6. https://doi.org/10.1109/ISCIS.2008.4717863
  • Ellender B.R., Becker A., Weyl O.L.F., Swartz E.R. Underwater video analysis as a non-destructive alternative to electrofishing for sampling imperilled headwater stream fishes. Aquatic Conservation: Marine and Freshwater Ecosystems. 2011. V. 22. № 1. P. 58–65. https://doi.org/10.1002/aqc.1236
  • Heikkila J. Geometric camera calibration using circular control points. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000. V. 22. № 10. P. 1066–1077.https://doi.org/10.1109/34.879788
  • Huang L., Zhao X., Huang X., Liu Y. Underwater camera model and its use in calibration. IEEE International Conference on Information and Automation. 2015. P. 1519–1523. https://doi.org/10.1109/ICInfA.2015.7279526
  • Konovalenko I., Sidorchuk D., Zenkin G. Analysis and compensation of geometric distortions, appearing when observing objects under water. Pattern Recognition and Image Analysis. 2018. V. 28. № 3. P. 379–392. https://doi.org/10.1134/s1054661818030112
  • Kunina I.A., Gladilin S.A., Nikolaev D.P. Blind radial distortion compensation in a single image using fast Hough transform. Computer optics. 2016. V. 40. P. 395–403. https://doi.org/10.18287/2412-6179-2016-40-3-395-403
  • Lavest J.M., Rives G., Lapresté J.T. Underwater camera calibration. European Conference on Computer Vision. Berlin, Heidelberg. Springer, 2000. P. 654–668. https://doi.org/10.1007/3-540-45053-X_42
  • Lehtola V.V., Kurkela M., Ronnholm P. Radial Distortion from Epipolar Constraint for Rectilinear Cameras. Journal of medical imaging. 2017. V. 3. № 1. P. 1–18. https://doi.org/10.3390/jimaging3010008
  • Lide D.R. CRC Handbook, CRC Handbook of Chemistry and Physics, 85th Edition. CRCPress, 2004.
  • Long L., Dongri S. Review of Camera Calibration Algorithms. Advances in Computer Communication and Computational Sciences. 2019. V. 924. P. 723–732. https://doi.org/10.1007/978-981-13-6861-5_61
  • Quan X., Fry E.S. Empirical equation for the index of refraction of seawater. Applied Optics. 1995. V. 34. № 18. P. 3477–3480. https://doi.org/10.1364/AO.34.003477
  • Sedlazeck A., Koch R. Perspective and non-perspective camera models in underwater imaging–overview and error analysis. Outdoor and large-scale real-world scene analysis. Berlin, Heidelberg. Springer, 2012. P. 212–242. https://doi.org/10.1007/978-3-642-34091-8_10
  • Shortis M. Camera Calibration Techniques for Accurate Measurement Underwater. Sensors. 2015. V. 15. №. 12. P. 30810–30826. https://doi.org/10.3390/s151229831
  • Skarlatos D., Agrafiotis P. Image-Based Underwater 3D Reconstruction for Cultural Heritage: From Image Collection to 3D. Critical Steps and Considerations. Visual Computing for Cultural Heritage. Springer Series on Cultural Computing. Cham. Springer, 2020. P. 141–158.
  • Somerton D.A., Glendhill C.T. Report of the National Marine Fisheries Service Workshop on Underwater Video Analysis. U.S. Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO-68, 2005. 69 p.
  • Xue Z., Xue N., Xia G., Shen W. Learning to calibrate straight lines for fisheye image rectification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019. P. 1643–1651. https://doi.org/10.1109/CVPR.2019.00174
  • Yau T., Gong M., Yang Y. Underwater Camera Calibration Using Wavelength Triangulation. IEEE Conference on Computer Vision and Pattern Recognition. 2013. P. 2499–2506. https://doi.org/10.1109/CVPR.2013.323
  • Zhang Y., Zhou F., Deng P. Camera calibration approach based on adaptive active target. Fourth International Conference on Machine Vision (ICMV 2011). 2012. V. 8350, 83501G. https://doi.org/10.1117/12.922899
  • Zhang Z. A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence. 2000. V. 22. P. 1330–1334. https://doi.org/10.1109/34.888718