• 2024 (Vol.38)
  • 1990 (Vol.4)
  • 1989 (Vol.3)
  • 1988 (Vol.2)
  • 1987 (Vol.1)

Method of iterative tomography reconstruction of cropped sinograms

© 2020 A. V. Buzmakov, D. A. Zolotov, M. V. Chukalina, A. S. Ingacheva, A. V. Sheshkus, V. E. Asadchikov

FSRC “Crystallography and Photonics” RAS 111933 Moscow, Leninskyi prosp., 59, Russia
Institute for Information Transmission Problems RAS 127051 Moscow, Bolshoi Karetnyi per. 9, Russia
FRC “Computer science and control” 119333 Moscow, Vavilova str, 44b2, Russia
Smart Engines Service LLC 117312 Moscow, 60-Letia Oktyabrya, 9, Russia

Received 03 Apr 2020

In this paper we offer a method of tomographic reconstruction in the case of a limited field of view, when the entire image of the investigated sample does not fit on the detector. The proposed method is based on an iterative procedure of tomographic reconstruction with corrections at each step in the sinogram space and reconstruction space. On the model and experimental data it is shown that the proposed technique allows improving the quality of tomographic reconstruction and expanding the field of vision.

Key words: x-ray microtomography, limited field of view, iterative reconstruction

DOI: 10.31857/S0235009220030038

Cite: Buzmakov A. V., Zolotov D. A., Chukalina M. V., Ingacheva A. S., Sheshkus A. V., Asadchikov V. E. Tomograficheskaya rekonstruktsiya pri ogranichennom pole zreniya detektora [Method of iterative tomography reconstruction of cropped sinograms]. Sensornye sistemy [Sensory systems]. 2020. V. 34(3). P. 210-216 (in Russian). doi: 10.31857/S0235009220030038

References:

  • Ingacheva А., Sheshkus A., Chernov. Т. Rentgenovskij komp’juternyj tomograf-novyj instrument v raspoznavanii [X-ray tomography set-up – new tool in image recognition]. Trudy Instituta sistemnogo analiza Rossijskoj akademii nauk. [Informational Technologies and Computation Systems].2018. V. 68 (S1). С. 90–99. (in Russian). https://doi.org/10.14357/20790279180510.
  • Azencott R., Bodmann B.G., Chowdhury T. ROI reconstruction from truncated cone-beam projections. Inverse Problems & Imaging 2018 V. 12 (1). P. 29–57. https://doi.org/10.3934/ipi.2018002
  • Buzmakov A., Zolotov D., Chukalina M. Overview of machine vision methods in x-ray imaging and microtomography. Tenth International Conference on Machine Vision (ICMV 2017). International Society for Optics and Photonics, 2018. V. 10696. P. 1069622. https://doi.org/10.1117/12.2309762
  • Buzmakov A.V., Asadchikov V.E., Zolotov D.A. Laboratory microtomographs: Design and data processing algorithms. Crystallography Reports. 2018. V. 63 (6). P. 1057–1061. https://doi.org/10.1134/S106377451806007X
  • Chityala R.N., Hoffmann K.R., Bednarek D.R., Rudin S. Region of interest (ROI) computed tomography. Medical Imaging 2004: Physics of Medical Imaging. International Society for Optics and Photonics, 2004. V. 5368. P. 534–541. https://doi.org/10.1117/12.534568
  • Clackdoyle R., Defrise M. Tomographic reconstruction in the 21st century. IEEE Signal Processing Magazine. 2010. V. 27 (4). P. 60–80. https://doi.org/10.1109/MSP.2010.936743
  • Du M., Vescovi R., Fezzaa K., Jacobsen C., Gürsoy D. X-ray tomography of extended objects: a comparison of data acquisition approaches. JOSA A. 2018. V. 35 (11). P. 1871–1879. https://doi.org/10.1364/JOSAA.35.001871
  • Ershov E., Terekhin A., Nikolaev D., Postnikov V., Karpenko S. Fast Hough transform analysis: pattern deviation from line segment. Eighth International Conference on Machine Vision (ICMV 2015). International Society for Optics and Photonics. 2015. V. 9875. P. 987509. https://doi.org/10.1117/12.2228852
  • Hamelin B., Goussard Y., Dussault J.P., Cloutier G., Beaudoin G., Soulez G. Design of iterative ROI transmission tomography reconstruction procedures and image quality analysis. Medical physics. 2010. V. 37 (9). P. 4577–4589. https://doi.org/10.1118/1.3447722
  • Han Y., Gu J., Ye J.C. Deep learning interior tomography for region-of-interest reconstruction. arXiv preprint arXiv:1712.10248. 2017. URL: https://arxiv.org/abs/1712.10248
  • Limonova E., Ilin D., Nikolaev D. Improving neural network performance on SIMD architectures. Eighth International Conference on Machine Vision (ICMV 2015). International Society for Optics and Photonics. 2015. V. 9875. P. 98750L. https://doi.org/10.1117/12.2228594
  • Shepp L.A., Logan B.F. The Fourier reconstruction of a head section. IEEE Transactions on nuclear science. 1974. V. 21 (3). P. 21–43. https://doi.org/10.1109/TNS.1974.6499235
  • Van Aarle W., Palenstijn W.J., Cant J. Fast and f lexible X-ray tomography using the ASTRA toolbox. Optics express. 2016. V. 24 (22). P. 25129-25147. https://doi.org/10.1364/OE.24.025129
  • Wiegert J., Bertram M., Wulff J. 3D ROI imaging for conebeam computed tomography. International Congress Series. Elsevier. 2004. V. 1268. P. 7–12. https://doi.org/10.1016/j.ics.2004.03.233